1. For this network, starting with flow 1 , use the residual flow method to find a max flow: show residual networks $1,2,3$ and flows 2 and 3.

flow 1

flow 2

2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: $8\{s, a\}\{b, c, d, e, t\}$
b) Prove that your cut is a min cut.
3. You manage a communications network with users $\mathrm{B}, \mathrm{C}, \mathrm{D}$ only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you $\$ 3, \$ 5, \$ 4$ respectively per unit bandwidth. Between each pair of users at least 6 units must be routed.

Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define $x C D$, $y C D$, similarly. For B-D: $x B D$, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:
a) Give the objective function.
b) Give the system of (in)equalities.
c) Give a feasible solution.
5. a) Give a maximum matching for this bipartite graph G. For example, $\{(0,5)\}$ is a matching with size 1 .

b) Here is an s - t flow network H. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for H. For example, $\{s, 1\}$ is a cut with capacity 2.

c) Prove that your matching in a) is maximum.

1. For this network, starting with flow 1 , use the residual flow method to find a max flow: show residual networks $1,2,3$ and flows 2 and 3.

flow 1

flow 2

2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: $8\{s, a\}\{b, c, d, e, t\}$
b) Prove that your cut is a min cut.
3. You manage a communications network with users $\mathrm{B}, \mathrm{C}, \mathrm{D}$ only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you $\$ 4, \$ 5, \$ 3$ respectively per unit bandwidth. Between each pair of users at least 7 units must be routed.

Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define $x C D$, $y C D$, similarly. For B-D: $x B D$, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:
a) Give the objective function.
b) Give the system of (in)equalities.
c) Give a feasible solution.
5. a) Give a maximum matching for this bipartite graph G. For example, $\{(0,6)\}$ is a matching with size 1 .

b) Here is an $s-t$ flow network H. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for H. For example, $\{s, 1\}$ is a cut with capacity 2.

c) Prove that your matching in a) is maximum.

1. For this network, starting with flow 1 , use the residual flow method to find a max flow: show residual networks $1,2,3$ and flows 2 and 3.

flow 1

flow 2

2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: $8\{s, a\}\{b, c, d, e, t\}$
b) Prove that your cut is a min cut.
3. You manage a communications network with users $\mathrm{B}, \mathrm{C}, \mathrm{D}$ only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you $\$ 5, \$ 3, \$ 4$ respectively per unit bandwidth. Between each pair of users at least 5 units must be routed.

Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define $x C D$, $y C D$, similarly. For B-D: $x B D$, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:
a) Give the objective function.
b) Give the system of (in)equalities.
c) Give a feasible solution.
5. a) Give a maximum matching for this bipartite graph G. For example, $\{(2,5)\}$ is a matching with size 1 .

b) Here is an $s-t$ flow network H. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for H. For example, $\{s, 0\}$ is a cut with capacity 2.

c) Prove that your matching in a) is maximum.

