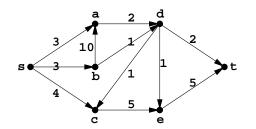
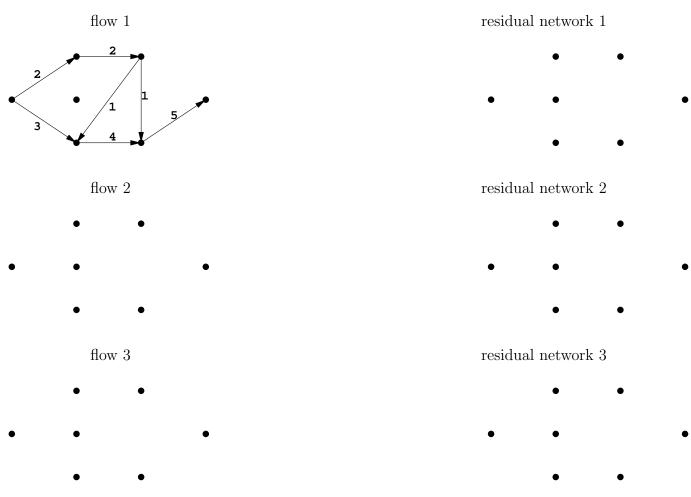
first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 1

1. For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.



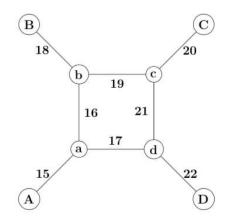


2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

b) Prove that your cut is a min cut.

first name	la	ast name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

3. You manage a communications network with users B,C,D only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$3, \$5, \$4 respectively per unit bandwidth. Between each pair of users at least 6 units must be routed.



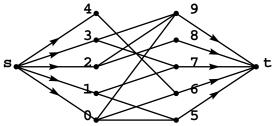
Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:

- a) Give the objective function.
- b) Give the system of (in)equalities.

c) Give a feasible solution.

first name	la	st name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 3
5. a) Give a maximu	m matching fo	r this bipartite grap	h G . For example,		
{ (0,5) } is a mat	-		1 /	4	9
	0			3	• 8
				2	• 7

b) Here is an *s*-*t* flow network *H*. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for *H*. For example, $\{$ **s**, **1** $\}$ is a cut with capacity 2.

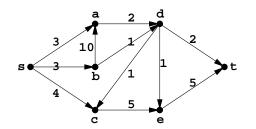


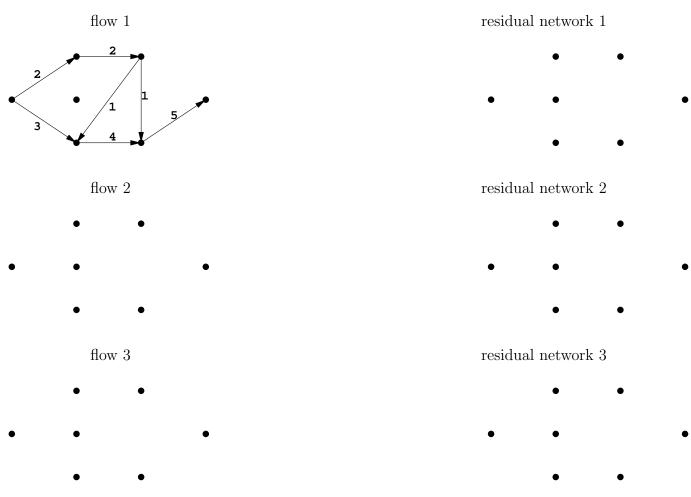
6 5

c) Prove that your matching in a) is maximum.

first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 1

1. For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.



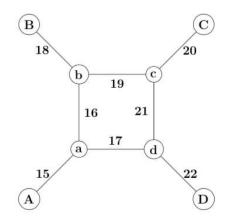


2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

b) Prove that your cut is a min cut.

first name	la	ast name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

3. You manage a communications network with users B,C,D only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$4, \$5, \$3 respectively per unit bandwidth. Between each pair of users at least 7 units must be routed.

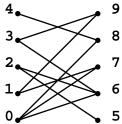


Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:

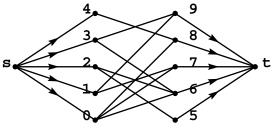
- a) Give the objective function.
- b) Give the system of (in)equalities.

c) Give a feasible solution.

first name	la	ast name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 3
5. a) Give a maximum { (0,6) } is a mate	0	- 0 -	G. For example,	4	9



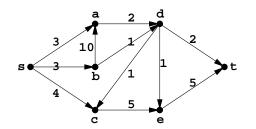
b) Here is an *s*-*t* flow network *H*. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for *H*. For example, $\{$ s, 1 $\}$ is a cut with capacity 2.

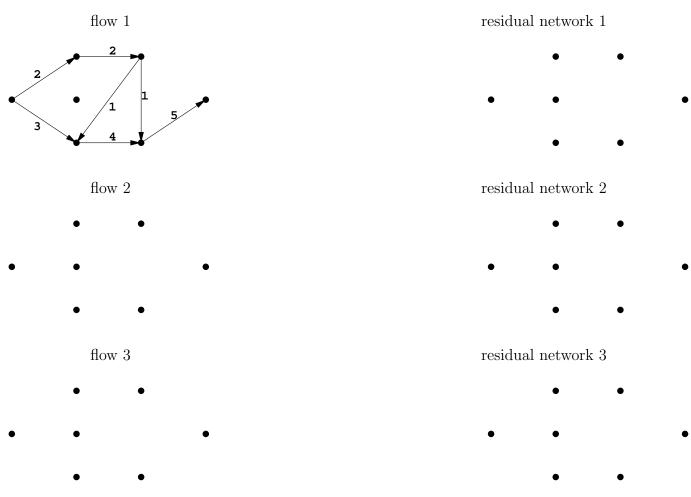


c) Prove that your matching in a) is maximum.

first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 1

1. For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.



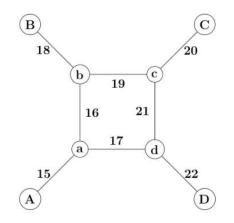


2. a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

b) Prove that your cut is a min cut.

first name	la	ast name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

3. You manage a communications network with users B,C,D only (A is no longer involved) and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$5, \$3, \$4 respectively per unit bandwidth. Between each pair of users at least 5 units must be routed.

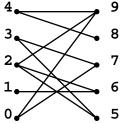


Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP:

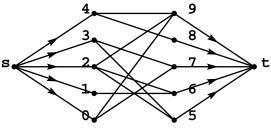
- a) Give the objective function.
- b) Give the system of (in)equalities.

c) Give a feasible solution.

first name	las	st name	$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 3
5. a) Give a maximur { (2,5) } is a mate	0		G. For example,	4	9



b) Here is an *s*-*t* flow network *H*. Each arc has capacity 1. Arrows on middle arcs have been omitted, they are all from left to right. Give a min cut for *H*. For example, $\{$ **s**, 0 $\}$ is a cut with capacity 2.



c) Prove that your matching in a) is maximum.