
first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 1

1. In the box at right,

for H = [[0,1,2],[1,0,2],[1,0,2]]

and R = [[1,2,0],[0,1,2],[2,1,0]],

show the output printed by m=propose_reject(H,R).

def propose_reject(H,R):

n = pref_system_size(H,R)

F,C = [None] * n, [0 for j in range(n)]

rejection = True

while rejection:

rejection = False

for j in range(n):

h_choice = H[j][C[j]] # current H proposal

if F[h_choice] == None: #R has no prop’ls

F[h_choice] = j

print(’ ’,j,’ prop ’,h_choice,’: maybe’)

elif F[h_choice] != j: #R has 2 prop’ls

r_maybe = F[h_choice] #R’s current prop’l

if prefers(R[h_choice], j, r_maybe):

r_reject, r_maybe = r_maybe, j

F[h_choice] = r_maybe

else:

r_reject = j

print(’ ’,j,’prop’,h_choice,

’:pref’,r_maybe,’,rej’,r_reject)

C[r_reject] += 1 # H[j_rej.]: next pref

rejection = True # a prop’l was rejected

P = [H[j][C[j]] for j in range(n)]

print(’\nj P C F’)

[print(j, P[j], C[j], F[j]) for j in range(n)]

return P

Show your rough work here.

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a

stable matching, or explain why this is not possible.

3. def myunion(x,y,P):

rootx = findGP(x,P)

rooty = findGP(y,P)

P[rootx] = rooty

def findGP(x, P):

px = P[x]

if x==px: return x

gx = P[px] #grandparent

while px != gx:

P[x] = gx

x = px

px = gx

gx = P[gx]

return px

P represents 8 components of size 1:

j 0 1 2 3 4 5 6 7

P[j] 0 1 2 3 4 5 6 7

Now show P after myunion(2,3,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(3,4,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(4,5,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(5,6,P):

P[j] __ __ __ __ __ __ __ __

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 3

a

b

c

d

e

f

g

h

w

x

y

z

J

K

L

M

N

P

Q

R

S

T

U

VE

F

G

H

J

K

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph

(above left), {{w,x}, {y,z}} is a cut with cross-edges {F,G,H,J}. RKMC is the randomized Kruskal min cut

algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges) . . .

5. . . . and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC

when edges are input in order LUQRKNTVSJMP.

a

b

c

d

e

f

g

h

6. Let G be a connected graph with a cut {X, Y } with G[X] (the subgraph of G on the node set X)

connected but G[Y] disconnected, with exactly two components G[Y1] and G[Y2]. Prove or disprove:

{X, Y } is a min cut of G.

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 1

1. In the box at right,

for H = [[1,2,0],[2,1,0],[2,1,0]]

and R = [[0,1,2],[1,2,0],[0,2,1]],

show the output printed by m=propose_reject(H,R).

def propose_reject(H,R):

n = pref_system_size(H,R)

F,C = [None] * n, [0 for j in range(n)]

rejection = True

while rejection:

rejection = False

for j in range(n):

h_choice = H[j][C[j]] # current H proposal

if F[h_choice] == None: #R has no prop’ls

F[h_choice] = j

print(’ ’,j,’ prop ’,h_choice,’: maybe’)

elif F[h_choice] != j: #R has 2 prop’ls

r_maybe = F[h_choice] #R’s current prop’l

if prefers(R[h_choice], j, r_maybe):

r_reject, r_maybe = r_maybe, j

F[h_choice] = r_maybe

else:

r_reject = j

print(’ ’,j,’prop’,h_choice,

’:pref’,r_maybe,’,rej’,r_reject)

C[r_reject] += 1 # H[j_rej.]: next pref

rejection = True # a prop’l was rejected

P = [H[j][C[j]] for j in range(n)]

print(’\nj P C F’)

[print(j, P[j], C[j], F[j]) for j in range(n)]

return P

Show your rough work here.

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a

stable matching, or explain why this is not possible.

3. def myunion(x,y,P):

rootx = findGP(x,P)

rooty = findGP(y,P)

P[rootx] = rooty

def findGP(x, P):

px = P[x]

if x==px: return x

gx = P[px] #grandparent

while px != gx:

P[x] = gx

x = px

px = gx

gx = P[gx]

return px

Here P represents 8 components of size 1:

j 0 1 2 3 4 5 6 7

P[j] 0 1 2 3 4 5 6 7

Show P after myunion(3,4,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(4,5,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(5,6,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(6,7,P):

P[j] __ __ __ __ __ __ __ __

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 3

a

b

c

d

e

f

g

h

w

x

y

z

J

K

L

M

N

P

Q

R

S

T

U

VE

F

G

H

J

K

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph

(above left), {{w,x}, {y,z}} is a cut with cross-edges {F,G,H,J}. RKMC is the randomized Kruskal min cut

algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges) . . .

5. . . . and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC

when edges are input in order QPRKNTMLJUVS.

a

b

c

d

e

f

g

h

6. Let G be a connected graph with a cut {X, Y } with G[X] (the subgraph of G on the node set X)

connected but G[Y] disconnected, with exactly two components G[Y1] and G[Y2]. Prove or disprove:

{X, Y } is a min cut of G.

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 1

1. In the box at right,

for H = [[0,2,1],[2,0,1],[0,2,1]]

and R = [[1,2,0],[0,2,1],[2,0,1]],

show the output printed by m=propose_reject(H,R).

def propose_reject(H,R):

n = pref_system_size(H,R)

F,C = [None] * n, [0 for j in range(n)]

rejection = True

while rejection:

rejection = False

for j in range(n):

h_choice = H[j][C[j]] # current H proposal

if F[h_choice] == None: #R has no prop’ls

F[h_choice] = j

print(’ ’,j,’ prop ’,h_choice,’: maybe’)

elif F[h_choice] != j: #R has 2 prop’ls

r_maybe = F[h_choice] #R’s current prop’l

if prefers(R[h_choice], j, r_maybe):

r_reject, r_maybe = r_maybe, j

F[h_choice] = r_maybe

else:

r_reject = j

print(’ ’,j,’prop’,h_choice,

’:pref’,r_maybe,’,rej’,r_reject)

C[r_reject] += 1 # H[j_rej.]: next pref

rejection = True # a prop’l was rejected

P = [H[j][C[j]] for j in range(n)]

print(’\nj P C F’)

[print(j, P[j], C[j], F[j]) for j in range(n)]

return P

Show your rough work here.

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a

stable matching, or explain why this is not possible.

3. def myunion(x,y,P):

rootx = findGP(x,P)

rooty = findGP(y,P)

P[rootx] = rooty

def findGP(x, P):

px = P[x]

if x==px: return x

gx = P[px] #grandparent

while px != gx:

P[x] = gx

x = px

px = gx

gx = P[gx]

return px

Here P represents 8 components of size 1:

j 0 1 2 3 4 5 6 7

P[j] 0 1 2 3 4 5 6 7

Show P after myunion(1,2,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(2,3,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(3,4,P):

P[j] __ __ __ __ __ __ __ __

... and then after myunion(4,5,P):

P[j] __ __ __ __ __ __ __ __

first name last name id#

each page 8 marks 30 min closed book no devices 3 pages page 3

a

b

c

d

e

f

g

h

w

x

y

z

J

K

L

M

N

P

Q

R

S

T

U

VE

F

G

H

J

K

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph

(above left), {{w,x}, {y,z}} is a cut with cross-edges {F,G,H,J}. RKMC is the randomized Kruskal min cut

algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges) . . .

5. . . . and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC

when edges are input in order SJTRVLNPUMKQ.

a

b

c

d

e

f

g

h

6. Let G be a connected graph with a cut {X, Y } with G[X] (the subgraph of G on the node set X)

connected but G[Y] disconnected, with exactly two components G[Y1] and G[Y2]. Prove or disprove:

{X, Y } is a min cut of G.

