1. In the box at right,
for $H=[[0,1,2],[1,0,2],[1,0,2]]$
and $R=[[1,2,0],[0,1,2],[2,1,0]]$,
show the output printed by m=propose_reject (H, R).
```
def propose_reject(H,R):
    n = pref_system_size(H,R)
    F,C = [None] * n, [0 for j in range(n)]
    rejection = True
    while rejection:
        rejection = False
        for j in range(n):
            h_choice = H[j][C[j]] # current H proposal
            if F[h_choice] == None: #R has no prop'ls
            F[h_choice] = j
            print(' ',j,' prop ',h_choice,': maybe')
            elif F[h_choice] != j: #R has 2 prop'ls
            r_maybe = F[h_choice] #R's current prop'l
            if prefers(R[h_choice], j, r_maybe):
                r_reject, r_maybe = r_maybe, j
                F[h_choice] = r_maybe
            else:
                r_reject = j
            print(' ',j,'prop',h_choice,
                ':pref',r_maybe,',rej',r_reject)
            C[r_reject] += 1 # H[j_rej.]: next pref
            rejection = True # a prop'l was rejected
    P = [H[j][C[j]] for j in range(n)]
    print('\nj P C F')
    [print(j, P[j], C[j], F[j]) for j in range(n)]
    return P
```

Show your rough work here.
2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.

```
3. def myunion \((x, y, P)\) : \(\quad\) P represents 8 components of size 1:
    rootx \(=\) findGP \((x, P)\)
    rooty \(=\) findGP ( \(y, P\) )
    \(P[\) rootx \(]=\) rooty
def findGP(x, \(P):\)
    \(p x=P[x]\)
    if \(x==p x\) : return \(x\)
    gx = \(P[p x]\) \#grandparent
    while px ! \(=~ g x:\)
\begin{tabular}{lllllllll}
\(j\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\(P[j]\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{tabular}
Now show \(P\) after myunion \((2,3, P)\) :
P[j] -- -- -- -- -- -- -- --
    ... and then after myunion(3,4,P):
        \(P[x]=g x\)
        \(\mathrm{x}=\mathrm{px}\)
        \(\mathrm{px}=\mathrm{gx}\)
        \(g x=P[g x]\)
    ... and then after myunion \((4,5, \mathrm{P})\) :
    return px
P[j] -- -- -- -- -- -- -- --
P[j] -- -- -- -- -- -- -- --
... and then after myunion(5,6,P):
P[j] -_ -- -- -- -- -- -- --
```


Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{\mathrm{w}, \mathrm{x}\},\{\mathrm{y}, \mathrm{z}\}\}$ is a cut with cross-edges $\{\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.
4. For the big graph, give each min cut (partition and cross-edges) ...
5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order LUQRKNTVSJMP.
b ${ }^{\bullet}$

h
a
C ${ }^{\bullet}$
e

g
6. Let G be a connected graph with a cut $\{X, Y\}$ with $G[X]$ (the subgraph of G on the node set X) connected but $G[Y]$ disconnected, with exactly two components $G\left[Y_{1}\right]$ and $G\left[Y_{2}\right]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.

1. In the box at right,
for $H=[[1,2,0],[2,1,0],[2,1,0]]$
and $R=[[0,1,2],[1,2,0],[0,2,1]]$,
show the output printed by m=propose_reject (H, R).
```
def propose_reject(H,R):
    n = pref_system_size(H,R)
    F,C = [None] * n, [0 for j in range(n)]
    rejection = True
    while rejection:
        rejection = False
        for j in range(n):
            h_choice = H[j][C[j]] # current H proposal
            if F[h_choice] == None: #R has no prop'ls
                F[h_choice] = j
            print(' ',j,' prop ',h_choice,': maybe')
            elif F[h_choice] != j: #R has 2 prop'ls
            r_maybe = F[h_choice] #R's current prop'l
            if prefers(R[h_choice], j, r_maybe):
                r_reject, r_maybe = r_maybe, j
                F[h_choice] = r_maybe
            else:
                r_reject = j
            print(' ',j,'prop',h_choice,
                ':pref',r_maybe,',rej',r_reject)
            C[r_reject] += 1 # H[j_rej.]: next pref
            rejection = True # a prop'l was rejected
    P = [H[j][C[j]] for j in range(n)]
    print('\nj P C F')
    [print(j, P[j], C[j], F[j]) for j in range(n)]
    return P
```

Show your rough work here.
2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.
3. def myunion($\mathrm{x}, \mathrm{y}, \mathrm{P}$):
rootx $=$ findGP (x, P)
rooty $=$ findGP (y, P)
P [rootx] = rooty
def findGP(x, $P):$
$\mathrm{px}=\mathrm{P}[\mathrm{x}]$
if $x==p x$: return x
gx = P[px] \#grandparent
while $p x$! $=g x:$
$P[x]=g x$
$\mathrm{x}=\mathrm{px}$
$\mathrm{px}=\mathrm{gx}$
$\mathrm{gx}=\mathrm{P}[\mathrm{gx}]$
return px

Here P represents 8 components of size 1:

j	0	1	2	3	4	5	6	7
$P[j]$	0	1	2	3	4	5	6	7

Show P after myunion $(3,4, P)$:
P[j] -- -- -- -- -- -- -- --
\ldots and then after myunion $(4,5, P)$:

P[j] -- -- -- -- -- -- -- --
\ldots and then after myunion ($5,6, \mathrm{P}$):

P[j] -- -- -- -- -- -- -- --
... and then after myunion ($6,7, \mathrm{P}$):

P[j] -_ -- -- -- -- -- -- --

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{\mathrm{w}, \mathrm{x}\},\{\mathrm{y}, \mathrm{z}\}\}$ is a cut with cross-edges $\{\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.
4. For the big graph, give each min cut (partition and cross-edges) ...
5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order QPRKNTMLJUVS.

> b

h
a
C ${ }^{\bullet}$
e

g
6. Let G be a connected graph with a cut $\{X, Y\}$ with $G[X]$ (the subgraph of G on the node set X) connected but $G[Y]$ disconnected, with exactly two components $G\left[Y_{1}\right]$ and $G\left[Y_{2}\right]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.

1. In the box at right,
for $H=[[0,2,1],[2,0,1],[0,2,1]]$
and $R=[[1,2,0],[0,2,1],[2,0,1]]$,
show the output printed by m=propose_reject (H, R).
```
def propose_reject(H,R):
    n = pref_system_size(H,R)
    F,C = [None] * n, [0 for j in range(n)]
    rejection = True
    while rejection:
        rejection = False
        for j in range(n):
            h_choice = H[j][C[j]] # current H proposal
            if F[h_choice] == None: #R has no prop'ls
            F[h_choice] = j
            print(' ',j,' prop ',h_choice,': maybe')
            elif F[h_choice] != j: #R has 2 prop'ls
            r_maybe = F[h_choice] #R's current prop'l
            if prefers(R[h_choice], j, r_maybe):
                r_reject, r_maybe = r_maybe, j
                F[h_choice] = r_maybe
            else:
                r_reject = j
            print(' ',j,'prop',h_choice,
                ':pref',r_maybe,',rej',r_reject)
            C[r_reject] += 1 # H[j_rej.]: next pref
            rejection = True # a prop'l was rejected
    P = [H[j][C[j]] for j in range(n)]
    print('\nj P C F')
    [print(j, P[j], C[j], F[j]) for j in range(n)]
    return P
```

Show your rough work here.
2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.
3. def myunion(x, y, P):
rootx $=f i n d G P(x, P)$
rooty $=$ findGP (y, P)

P[rootx] = rooty
def findGP(x, $P):$
$\mathrm{px}=\mathrm{P}[\mathrm{x}]$
if $x==p x$: return x
gx = $P[p x]$ \#grandparent
while $p x$! $=g x:$
$P[x]=g x$
$\mathrm{x}=\mathrm{px}$
$\mathrm{px}=\mathrm{gx}$
$\mathrm{gx}=\mathrm{P}[\mathrm{gx}]$
return px

Here P represents 8 components of size 1:

j	0	1	2	3	4	5	6	7
$P[j]$	0	1	2	3	4	5	6	7

Show P after myunion $(1,2, P)$:
P[j] -- -- -- -- -- -- -- --
\ldots and then after myunion $(2,3, \mathrm{P})$:

P[j] -- -- -- -- -- -- -- --
... and then after myunion ($3,4, \mathrm{P}$):

P[j] -- -- -- -- -- -- -- --
... and then after myunion ($4,5, \mathrm{P}$):

P[j] -- -- -- -- -- -- -- --

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{\mathrm{w}, \mathrm{x}\},\{\mathrm{y}, \mathrm{z}\}\}$ is a cut with cross-edges $\{\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.
4. For the big graph, give each min cut (partition and cross-edges) ...
5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order SJTRVLNPUMKQ.
b

h
a
C ${ }^{\bullet}$
e \square
6. Let G be a connected graph with a cut $\{X, Y\}$ with $G[X]$ (the subgraph of G on the node set X) connected but $G[Y]$ disconnected, with exactly two components $G\left[Y_{1}\right]$ and $G\left[Y_{2}\right]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.

