\mathbf{first}	name
1	0 1

```
for H = [[0,1,2], [1,0,2], [1,0,2]]
and R = [[1,2,0], [0,1,2], [2,1,0]],
show the output printed by m=propose_reject(H,R).
def propose_reject(H,R):
 n = pref_system_size(H,R)
 F,C = [None] * n, [0 \text{ for } j \text{ in } range(n)]
 rejection = True
 while rejection:
    rejection = False
    for j in range(n):
      h_choice = H[j][C[j]] # current H proposal
      if F[h_choice] == None: #R has no prop'ls
        F[h_choice] = j
        print(' ',j,' prop ',h_choice,': maybe')
      elif F[h_choice] != j: #R has 2 prop'ls
        r_maybe = F[h_choice] #R's current prop'l
        if prefers(R[h_choice], j, r_maybe):
          r_reject, r_maybe = r_maybe, j
          F[h_choice] = r_maybe
        else:
          r_reject = j
        print(' ',j,'prop',h_choice,
              ':pref',r_maybe,',rej',r_reject)
        C[r_reject] += 1 # H[j_rej.]: next pref
        rejection = True # a prop'l was rejected
 P = [H[j][C[j]] \text{ for } j \text{ in range}(n)]
 print('\nj P C F')
  [print(j, P[j], C[j], F[j]) for j in range(n)]
 return P
```

Show your rough work here.

first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.

```
3. def myunion(x,y,P):
                                        P represents 8 components of size 1:
    rootx = findGP(x, P)
    rooty = findGP(y, P)
                                               0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7
                                         j
                                         P[j] 0 1 2 3 4 5 6 7
    P[rootx] = rooty
                                         Now show P after myunion(2,3,P):
  def findGP(x, P):
    px = P[x]
                                        P[j] __ __ __ __ __ __ __ __
    if x==px: return x
    gx = P[px] #grandparent
    while px != gx:
                                         ... and then after myunion(3,4,P):
      P[x] = gx
      x = px
                                         P[j] __ __ __ __ __ __ __ __
      px = gx
      gx = P[gx]
                                         ... and then after myunion(4,5,P):
    return px
                                        P[j] __ __ __ __ __ __ __ __
                                         ... and then after myunion(5,6,P):
                                         P[j] __ __ __ __ __ __ __ __
```


Recall: a *cut* of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{w,x\}, \{y,z\}\}$ is a cut with cross-edges $\{F,G,H,J\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges) ...

5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order LUQRKNTVSJMP.

6. Let G be a connected graph with a cut $\{X, Y\}$ with G[X] (the subgraph of G on the node set X) connected but G[Y] disconnected, with exactly two components $G[Y_1]$ and $G[Y_2]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.

first name	t name last name		id≠	#	
each page 8 marks	30 min	closed book	no devices	3 pages	page 1
1. In the box at right,					
for $H = [[1,2,0]],$		011			
and $R = [[0,1,2]]$					
show the output pri		· /			
show the output pi	intea by m-prop	Jose_reject(11,11).			
def propose_reject	t(H,R):				
n = pref_system_	_size(H,R)				
F,C = [None] * r	n, [O for j in	range(n)]			
rejection = True	e				
while rejection:	:				
rejection = Fa	alse				
for j in range	e(n):				
$h_{choice} = H$	4[j][C[j]] # c	urrent H proposal			
if F[h_choid	ce] == None: #	R has no prop'ls			
F[h_choice	e] = j				
<pre>print(' '</pre>	,j,' prop ',h_	choice,': maybe')			
elif F[h_cho	oice] != j: #R	has 2 prop'ls			
r_maybe =	F[h_choice] #	R's current prop'l			
if prefers	s(R[h_choice],	j, r_maybe):			
r_reject	t, r_maybe = r	_maybe, j			
F[h_choi	ice] = r_maybe				
else:					
r_reject	t = j				
<pre>print(' '</pre>	j,'prop',h_ch	oice,			
יב: י	ref',r_maybe,'	,rej',r_reject)			
C[r_reject	t] += 1 # H[j_:	rej.]: next pref			
rejection	= True # a pr	op'l was rejected			
P = [H[j][C[j]]	for j in rang	e(n)]			
print('\nj P (C F')				
<pre>[print(j, P[j],</pre>	C[j], F[j]) f	or j in range(n)]			
<pre>print(' ',</pre>	<pre>,j,'prop',h_ch ref',r_maybe,' t] += 1 # H[j_: = True # a pr for j in rang C F')</pre>	,rej',r_reject) rej.]: next pref op'l was rejected e(n)]			

Show your rough work here.

return P

first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.

```
3. def myunion(x,y,P):
                                        Here P represents 8 components of size 1:
    rootx = findGP(x, P)
    rooty = findGP(y, P)
                                               0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7
                                         j
                                        P[j] 0 1 2 3 4 5 6 7
    P[rootx] = rooty
                                         Show P after myunion(3,4,P):
  def findGP(x, P):
    px = P[x]
                                        P[j] __ __ __ __ __ __ __ __
    if x==px: return x
    gx = P[px] #grandparent
    while px != gx:
                                         ... and then after myunion(4,5,P):
      P[x] = gx
                                         P[j] __ __ __ __ __ __ __ __
      x = px
      px = gx
      gx = P[gx]
                                         ... and then after myunion(5,6,P):
    return px
                                        P[j] __ __ __ __ __ __ __ __
                                         ... and then after myunion(6,7,P):
                                         P[j] __ __ __ __ __ __ __ __
```


Recall: a *cut* of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{w,x\}, \{y,z\}\}$ is a cut with cross-edges $\{F,G,H,J\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges) ...

5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order QPRKNTMLJUVS.

6. Let G be a connected graph with a cut $\{X, Y\}$ with G[X] (the subgraph of G on the node set X) connected but G[Y] disconnected, with exactly two components $G[Y_1]$ and $G[Y_2]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.

first	name	


```
for H = [[0,2,1], [2,0,1], [0,2,1]]
and R = [[1,2,0], [0,2,1], [2,0,1]],
show the output printed by m=propose_reject(H,R).
def propose_reject(H,R):
 n = pref_system_size(H,R)
 F,C = [None] * n, [0 \text{ for } j \text{ in } range(n)]
 rejection = True
 while rejection:
    rejection = False
    for j in range(n):
      h_choice = H[j][C[j]] # current H proposal
      if F[h_choice] == None: #R has no prop'ls
        F[h_choice] = j
        print(' ',j,' prop ',h_choice,': maybe')
      elif F[h_choice] != j: #R has 2 prop'ls
        r_maybe = F[h_choice] #R's current prop'l
        if prefers(R[h_choice], j, r_maybe):
          r_reject, r_maybe = r_maybe, j
          F[h_choice] = r_maybe
        else:
          r_reject = j
        print(' ',j,'prop',h_choice,
              ':pref',r_maybe,',rej',r_reject)
        C[r_reject] += 1 # H[j_rej.]: next pref
        rejection = True # a prop'l was rejected
 P = [H[j][C[j]] \text{ for } j \text{ in range}(n)]
 print('\nj P C F')
  [print(j, P[j], C[j], F[j]) for j in range(n)]
  return P
```

Show your rough work here.

first name	last name		$\mathrm{id}\#$		
each page 8 marks	30 min	closed book	no devices	3 pages	page 2

2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable matching, or explain why this is not possible.

```
3. def myunion(x,y,P):
                                        Here P represents 8 components of size 1:
    rootx = findGP(x, P)
    rooty = findGP(y, P)
                                               0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7
                                         j
                                        P[j] 0 1 2 3 4 5 6 7
    P[rootx] = rooty
                                         Show P after myunion(1,2,P):
  def findGP(x, P):
    px = P[x]
                                        P[j] __ __ __ __ __ __ __ __
    if x==px: return x
    gx = P[px] #grandparent
    while px != gx:
                                         ... and then after myunion(2,3,P):
      P[x] = gx
                                         P[j] __ __ __ __ __ __ __ __
      x = px
      px = gx
      gx = P[gx]
                                         ... and then after myunion(3,4,P):
    return px
                                        P[j] __ __ __ __ __ __ __ __
                                         ... and then after myunion(4,5,P):
                                         P[j] __ __ __ __ __ __ __ __
```


Recall: a *cut* of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{w,x\}, \{y,z\}\}$ is a cut with cross-edges $\{F,G,H,J\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

4. For the big graph, give each min cut (partition and cross-edges)

5. ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order SJTRVLNPUMKQ.

6. Let G be a connected graph with a cut $\{X, Y\}$ with G[X] (the subgraph of G on the node set X) connected but G[Y] disconnected, with exactly two components $G[Y_1]$ and $G[Y_2]$. Prove or disprove: $\{X, Y\}$ is a min cut of G.