| each page 8 marks | 30 min | closed book | no devices | 3 pages |
| :--- | :--- | :--- | :--- | :--- | page 1

1. Recall: $f(n)=0,1, f(n-2)+f(n-1)$ when n is def ifib(n$)$: respectively $0,1, \geq 2$. For each non-negative integer $j, \quad \mathrm{a}, \mathrm{b}=0,1 \quad \# 1$ $C(j)$ is this claim: after line 3 has executed exactly j for _ in range (n): \#2 times, a, b equal $f(j), f(j+1)$ respectively.

Prove $C(0)$, i.e. after line 3 has executed exactly 0 times, a,b equal resp. $f(0), f(1)$.

Let w be a non-negative integer, and assume $C(w)$. Prove $C(w+1)$.
first name
each page 8 marks
last name
id\#
30 min
2. Recall: for a sequence S, for each index $j, L[j]$ is the length of a longest increasing subsequence (LIS) ending at position j. Below, show the values for L .

j	0	1	2	3	4	5	6	7	8	9
S	12	0	4	8	5	11	2	9	6	3

3. Let S be a sequence $\left(s_{0}, s_{1}, \ldots, s_{7}\right)$. Assume that $f(7)=4$. Assume that $\left(s_{1}, s_{3}, s_{4}, s_{7}\right)$ is an increasing subsequence. For each j below, give the set $Z(j)$ of possible values of $L[j]$ consistent with the above information.
$\begin{array}{lllllllll}j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Z(j)

Your justification for your answer to $\mathrm{Z}(0)$.

Your justification for your answer to $\mathrm{Z}(1)$.

You do not have to justify your other answers.
each page 8 marks $\quad 30 \mathrm{~min} \quad$ no devices $\quad 3$ pages booke 3
4. Below, is $\{0, \mathrm{~A}\}$ an unhappy couple? Explain carefully.

Below, is $\{2, C\}$ an unhappy couple? Explain carefully.

Below, is $\{3, \mathrm{D}\}$ an unhappy couple? Explain carefully.

5. a) For each assignment of values to u, v, w, x below, is the bipartite system valid and the matching stable? Explain each answer.
u 0 , v 1 , w 1 , x 1 ?
u 0 , v 1 , w 0 , x 1 ?
u 0 , v 1 , w 1 , x 0 ?

each page 8 marks $\quad 30 \mathrm{~min} \quad$ closed book \quad no devices $\quad 3$ pages \quad page 1

1. Recall: $f(n)=0,1, f(n-2)+f(n-1)$ when n is $\operatorname{def} \operatorname{ifib}(\mathrm{n})$: respectively $0,1, \geq 2$. For each non-negative integer $k, \quad \mathrm{a}, \mathrm{b}=0,1 \quad \# 1$ $C(k)$ is this claim: after line 3 has executed exactly k for _ in range (n): \#2 times, a, b equal $f(k), f(k+1)$ respectively.
$\mathrm{a}, \mathrm{b}=\mathrm{b}, \mathrm{a}+\mathrm{b} \quad \# 3$
return a \#4
Prove $C(0)$, i.e. after line 3 has executed exactly 0 times, a,b equal resp. $f(0), f(1)$.

Let x be a non-negative integer, and assume $C(x)$. Prove $C(x+1)$.
first name
each page 8 marks
last name
id\#
30 min
closed book
2. Recall: for a sequence S, for each index $j, L[j]$ is the length of a longest increasing subsequence (LIS) ending at position j. Below, show the values for L .

j	0	1	2	3	4	5	6	7	8	9
S	8	5	11	2	9	6	3	12	0	4

L
3. Let S be a sequence $\left(s_{0}, s_{1}, \ldots, s_{7}\right)$. Assume that $f(7)=4$. Assume that $\left(s_{1}, s_{2}, s_{5}, s_{7}\right)$ is an increasing subsequence. For each j below, give the set $Z(j)$ of possible values of $L[j]$ consistent with the above information.
$\begin{array}{lllllllll}j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Z(j)

Your justification for your answer to $\mathrm{Z}(0)$.

Your justification for your answer to $\mathrm{Z}(1)$.

You do not have to justify your other answers.
each page 8 marks $\quad 30 \mathrm{~min} \quad$ no devices $\quad 3$ pages book 3
4. Below, is $\{2, B\}$ an unhappy couple? Explain carefully.

Below, is $\{3, \mathrm{~A}\}$ an unhappy couple? Explain carefully.

Below, is $\{0, \mathrm{~A}\}$ an unhappy couple? Explain carefully.

5. a) For each assignment of values to u, v, w, x below, is the bipartite system valid and the matching stable? Explain each answer.
u 0 , v 1 , w 1 , x 0 ?
u 1 , v 0 , w 1 , x 0 ?
u 1 , v 1 , w 1 , x 0 ?

each page 8 marks $\quad 30 \mathrm{~min} \quad$ closed book \quad no devices $\quad 3$ pages \quad page 1

1. Recall: $f(n)=0,1, f(n-2)+f(n-1)$ when n is $\operatorname{def} \operatorname{ifib}(\mathrm{n})$: respectively $0,1, \geq 2$. For each non-negative integer $t, \quad \mathrm{a}, \mathrm{b}=0,1$ \#1 $C(t)$ is this claim: after line 3 has executed exactly t times, a, b equal $f(t), f(t+1)$ respectively.

for _ in range (n) :	$\# 2$
$\mathrm{a}, \mathrm{b}=\mathrm{b}, \mathrm{a}+\mathrm{b}$	$\# 3$
return a	$\# 4$

Prove $C(0)$, i.e. after line 3 has executed exactly 0 times, a,b equal resp. $f(0), f(1)$.

Let y be a non-negative integer, and assume $C(y)$. Prove $C(y+1)$.
first name
each page 8 marks
last name
id\#
30 min
closed book
2. Recall: for a sequence S, for each index $j, L[j]$ is the length of a longest increasing subsequence (LIS) ending at position j. Below, show the values for L .

j	0	1	2	3	4	5	6	7	8	9
S	0	4	8	5	11	2	9	6	3	12

L
3. Let S be a sequence $\left(s_{0}, s_{1}, \ldots, s_{7}\right)$. Assume that $f(7)=4$. Assume that $\left(s_{1}, s_{4}, s_{5}, s_{7}\right)$ is an increasing subsequence. For each j below, give the set $Z(j)$ of possible values of $L[j]$ consistent with the above information.
$\begin{array}{lllllllll}j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Z(j)

Your justification for your answer to $\mathrm{Z}(0)$.

Your justification for your answer to $\mathrm{Z}(1)$.

You do not have to justify your other answers.
each page 8 marks $\quad 30 \mathrm{~min} \quad$ no devices $\quad 3$ pages booke 3
4. Below, is $\{3, \mathrm{~A}\}$ an unhappy couple? Explain carefully.

Below, is $\{1, \mathrm{D}\}$ an unhappy couple? Explain carefully.

Below, is $\{2, \mathrm{~A}\}$ an unhappy couple? Explain carefully.

5. a) For each assignment of values to u, v, w, x below, is the bipartite system valid and the matching unstable? Explain each answer.
u 0 , v 1 , w 1 , x 0 ?
u 0 , v 0 , w 1 , x 1 ?
u 0 , v 1 , w 0 , x 1 ?

