
v

304 lecture notes

up to September 7, 2023

© RBH

contents

preface ix

1 lecture summaries 1

1.1 lecture 1 1

1.2 lecture 2 2

vii

preface

These are Hayward’s course notes for the first few lectures of CM-
PUT 304 Algorithms II. (After that, I expect you to take your
own notes.)

Keep in mind:

• analysis starts with precise definitions

• for each algorithm, ask:

– can we prove it correct?

– can we give its worstcase runtime?

– can we do better?

ix

1

lecture summaries

Here’s what we’ve covered so far (and some of what we might
cover next). For each lecture, a recording will be posted on eclass
in section reference materials.

1.1 lecture 1

• syllabus (course outline)

• collatz conjecture

1

2 Chapter 1. lecture summaries

1.2 lecture 2

• algorithm: word origin?

• linear function?

– f(n) = an+ b

– more generally, any f(n) ∈ Θ(n)

1.2. lecture 2 3

O(n) is the set of all functions g(n) such that

there exists a constant c > 0 and a threshold

integer n_0, such that for all integers t > n_0,

g(t) <= c * t

Omega(n) is the set of all functions g(n) such that

there exists a constant c > 0 and a threshold

integer n_0, such that for all integers t > n_0,

g(t) >= c * t

give me an example of a function in Omega(n) ?

g(n) = n

g(n) = 3n + (lg n)^73 + 1239871234

g(n) = 1

g(n) = lg n + lg (lg n)) + (lg n)^2

O(f(n)) is the set of all functions g(n) such that

there exists a constant c > 0 and a threshold

integer n_0, such that for all integers n > n_0,

g(n) <= c * f(n)

4 Chapter 1. lecture summaries

• Prove/disprove: for an input of two integers whose max has
exactly n bits, (so size of input is Θ(n)), WC runtime school
add’n alg. in O(n).

• P/d: WC runtime school add’n alg. in Ω(n).

• P/d: WC runtime school add’n alg. in Θ(n).

• P/d: WC runtime of any add’n alg. in Ω(n).

[source: google 2023/09/07] Middle English algorism, via Old
French from medieval Latin algorismus. Arabic source, al-Kwarizmi,
‘the man of Kwarizm’ (now Khiva), name given to 9th-century
mathematician Abu Ja‘far Muhammad ibn Musa, author of widely
translated works on algebra and arithmetic.

1.2. lecture 2 5

worstcase runtime of addition?

• as a function of input size n, what is worstcase runtime f(n)?

• (this is called asymptotic analysis)

• input? postive integers x, y

• input size? amount of memory needed to represent x, y

• typical integer representation: binary

• how many bits needed to represent x, y?

• 1 + ⌈lg(x)⌉ + 1 + ⌈lg(y)⌉

• what is runtime of usual addition algorithm to add x, y?

• usual addition algorithm? you saw this in elementary school
(you saw decimal, we use binary)

carry 1 1 1 1 1 1 1 1 1

x 1 0 1 0 1 1 1 0 0 0 1

y + 1 0 0 1 1 0 1 1 1 0 1 1 1

sum 0 0 0 0 1 1 1 0 1 0 0 0

• time to add x, y with school algorithm is O(lg(x) + lg(y))

• for a function f(n), define O(f(n))

• answer: O(f(n)) is the set of all functions t(n) for which there
exists a positive constant c and some threshold integer n0, so
that for all integers m > n0, t(m) ≤ cf(m)

• O(lg(x) + lg(y)) = O(max(lg(x), lg(y)) = O(lg(max(x, y)))

• conclusion: for x < y, school addition algorithm has runtime
O(lg(y))

• so to add two numbers each at most t, runtime is

O(lg(t) + lg(t)) = O(2 lg(t)) = O(lg(t))

6 Chapter 1. lecture summaries

• can we say that addition is in O(lg(n)), where lg(n) is the
number of bits needed to represent the two input integers?

• yes

so, can we do better?

• no: addition takes Θ(t) time, where t is the number of bits
needed to represent the two input integers

• what is Θ(f(n))?

• recall Ω(f(n)) is . . .

• Θ(f(n)) is the intersection of Ω(f(n)) and O(f(n))

• to say that a problem (addition) takes Θ(f(n)) time, I mean
that the worstcase runtime of any algorithm for that problem is
in Ω(f(n)), and that there is some algorithm whose worstcase
runtime is in O(f(n))

• why is addition in Ω(lg(n)) time?

• to prove that any addition algorithm takes at least some con-
stant time lg(n) time, argue by contradiction: any algorithm
that looks at every input bit takes a Ω(lg(n)) time

• but if you don’t look at every bit, then you can have two in-
stances, where we change the value of the bit that your al-
gorithm does not look at, and those two instances will have
different sums, but your algorithm will have to give the same
answer for both instances, so your algorithm will get at least
one of those two instances wrong

• old-school square root algorithm example: see webnotes (warmup)

