cmput 3042023 study questions 7: part 2

1. Recall: for a graph $G=(V, E)$ and node subset $U \subseteq V, G[U]$ is the subgraph of G induced by U (all the nodes of U together with all edges of G that have both ends in U). For the graph G below, let $H=(X, F)=G[\{a, c, e, g, j, p, q\}$. Give X (the node set of H) and F (the edge set of H).

2. Recall: a clique is a graph $G=(V, E)$ is a subset K of V, such that for each pair of nodes x, y in $K,(x, y)$ is in E. Recall: a clique in a graph is maximal if it is not a proper subset of any larger clique. For example, in the graph above $\{a, c\}$ is not-maximal clique and $\{a, b, c\}$ is a maximal clique.
(a) List all maximal cliques of the above graph G.
(b) List all maximal independent sets of $G[\{a, b, c, d, e, f, g, j, h\}]$.
3. Recall: a node is simplicial in a graph if its set of neighbors is a clique.
(a) List all the simplicial nodes in the graph in question 1.
(b) Let v be simplicial node in a graph G. Let M be the set of non-neighbors of v. Let I_{M} be a largest independent set in $G[M]$. Prove that $\{v\} \cup I_{M}$ is an independent set in G.
(c) Prove that $\{v\} \cup I_{M}$ is a largest independent set in G.
4. For the graph G below, find a largest independent set in $G[\{A, B, C, \ldots R\}$.

5. Recall: a forest is a graph with no cycles, a tree is a connected forest, and a leaf is a node with at most one neighbor.
(a) Prove that every leaf in a forest is simplicial.
```
input: a tree T
I <- { } % empty set
while T has at least one node:
    remove from T any leaf v
    add v to I
    if v has a neighbor w:
        remove v, w, and edges (v,w) from T
    else:
        remove v from T
return I
```

(b) At each execution of the while loop, is T a tree (i.e. connected and acyclic)?
(c) For any tree T, is the set I returned by the algorithm a largest independent set of T ?
(d) In the algorithm, if T is initially connected but has a cycle (so not a tree), will the algorithm still always work? If yes, explain. If no, give an input graph where the algorithm does not work.
(e) In the algorithm, if T is initially acyclic but disconnected (so not a tree), will the algorithm still always work? If yes, explain. If no, give an input graph where the algorithm does not work.
6.

Let G be above graph. Let H be the graph obtained from G by removing nodes in $X=$ $\{k, p, q$,$\} (and all edges that include an edge with a node in X$).
(a) Formulate the problem of finding a largest independent set of H as an integer program.
(b) If you solve (a) using the mixed-integer-program solver at sagemath, will the solution be all integer, or might there be some non-integer (fractional) values in the solution? Explain.

hints

1. $X=\{a, c, e, g, j, p, q\} . F=\{(a, c),(c, j),(g, j),(j, p),(j, q),(p, q)\}$.
2. (a) https://webdocs.cs.ualberta.ca/~hayward/304/asn/ISperf.pdf see page 3 .
(b) $\{a, d, e, j\},\{a, d, f, h\},\{a, d, e, g\},\{a, e, j\},\{a, f, h\}$.
3. (a) a, k, p
(b) Rename $\{v\} \cup I_{M}$ as I^{\prime}. Let x, y be any two nodes in I^{\prime}. Then those two nodes are not adjacent. (Why? If one of the nodes is v, then the other is in the non-neighborhood of v and they are not adjacent. If neither node is v, then both are in I_{M}, which is an independent set, so they are not adjacent.)
(c) Let I^{+}be any largest independent set in G. Let I_{M}^{+}be the subgraph of I^{+}restricted to the set M. Claim: I_{M}^{+}is a largest independent set of $G[M]$.

Prove the claim by contradiction: assume that I_{M}^{+}is not a largest independent set of $G[M]$. Then there is some Z that is larger than I_{M}^{+}and an independent set of $G[M]$. Then $Z \cup\{v\}$ is an independent set of G (why? because v is non-adjacent with every node of M) and larger that $I^{+}=I_{M}^{+} \cup\{v\}=I^{+}$, contradicting the assumption that I^{+}is a largest independent set of G. So the claim holds.

Now I^{+}and $\{v\} \cup I_{M}$ are both independent sets and have the same size. I^{+}is a maximum independent set of G, so $\{v\} \cup I_{M}$ is also a largest independent set of G.
4. There are many correct answers. If you run the algorithm from question 5 on this graph and assume that the node list is in alphabetic order, then you get $\{A, B, E, G, H, I, K, N, P, R\}$.
5. (a) The set of neighbors of a leaf is either the empty set (so, vacuously a clique) or has exactly one element (again, vacuously a clique).
(b) No. For the graph in question 4, if the algorithm first removes leaf A and its neighbor C, then the remain graph has 3 components: $\{E\},\{B, D\}$, and the rest of the nodes.
(c) Yes, by (a) and question 3.
(d) No. If the input graph is a triangle, the algorithm will fail to find a leaf, and so not terminate.
(e) Yes. The input is a forest. Every forest with at least one node has a leaf. Removing a leaf and its neighbor, if it has one, leaves a forest.
6. (a) From page 3 of https://webdocs.cs.ualberta.ca/~hayward/304/asn/ISperf.pdf:
nodes $x _1$.. $x_{-} 12$ max'l cliques $y_{-} 1$.. y_10
abc bcd beh cfj dg ef ghj hk hjp jpq
$\max \left[\begin{array}{llll}1 & 1 & . . & 1\end{array}\right] \operatorname{x}$ s.t. $\mathrm{AX}<=\left[\begin{array}{llll}1 & 1 & . & 1\end{array}\right]^{\wedge} \mathrm{t}$
a b c defgh jkpq
A | $1 \begin{array}{lll}1 & 1\end{array}$
$\left.\begin{array}{llll}\mid & 1 & 1 & 1\end{array} \right\rvert\,$

Remove nodes in $X=\{k, p, q\}$, remove maximal cliques containing any node in X, and add cliques that are now maximal but weren't before.
(b) In class, I mentioned that this graph is from a class of graphs called perfect, that have this property: the max IS (independent set) IP (integer program) formulation has all extreme points all-integer, so any LP-solver that uses the simplex algorithm (like sagemath) will always find an all-integer solution to the max IS IP problem.

