cmput 3042023 study questions 4

1. Consider the 0-1 knapsack problem. Below, show the output from the dynamic-program-byweight (DPW) algorithm. Check your answer with algs/hard/knap.py.
val $[6,7,10,7,8]$
wt $[4,3,6,5,3] \mathrm{W} 15$

0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	--	--	--	--	--
4	0	--	--	--	--	--
5	0	--	--	--	--	--
6	0	--	--	--	--	--
7	0	--	--	--	--	--
8	0	--	--	--	--	--
9	0	--	--	--	--	--
10	0	--	--	--	--	--
11	0	--	--	--	--	--
12	0	--	--	--	--	--
13	0	--	--	--	--	--
14	0	--	--	--	--	--
15	0	--	--	--	--	--

2. Recall: a graph $G=(V, E)$ is defined by its node set V and edge set E. Recall: graphs $G=(V, E)$ and $H=(W, F)$ are equal if $V=W$ and $E=F$. Recall: graphs $G=(V, E)$ and $H=(W, F)$ are isomorphic if there is a bijection $f: V \leftrightarrow W$ such that $\{x, y\}$ is in E if and only if, for each edge $\{x, y\}$ in $E,\{f(x), f(y)\}$ is an edge in F.
a) Let $G=(V, E)$ and $H=(W, F)$ with $V=\{1,2,3\}, W=\{a, b, c\}, E=\{\{1,3\},\{1,2\}\}$, $F=\{\{a, c\},\{b, c\}\}$. Prove/disprove: $G=H$.
b) Continue from a): prove/disprove $G \cong H$.
3. Consider the 0-1 knapsack problem. Below, show the output from the dynamic-program-byvalue (DPV) algorithm. Check your answer with algs/hard/knap.py.
val $[3,4,6,5,5]$
wt $[4,3,6,5,3]$ W 18

0	0	0	0	0	0
1	-	-	-	-	-
2	-	-	-	-	-
3	--	--	--	--	--
4	--	--	--	--	--
5	--	--	--	--	--
6	--	--	--	--	--
7	--	--	--	--	--
8	--	--	--	--	--
9	--	--	--	--	--
10	--	--	--	--	--
11	--	--	--	--	--
12	--	--	--	--	--
13	--	--	--	--	--
14	--	--	--	--	--
15	--	--	--	--	--
16	--	--	--	--	--
17	--	--	--	--	--
18	--	--	--	--	--
19	--	--	--	--	--
20	--	--	--	--	--
21	--	--	--	--	--
22	--	--	--	--	--
23	--	--	--	--	--

4. Let $S(n)$ be $\{1,2, \ldots, n\}$. Let $P(n)$ be the set of all subsets of $S(n)$. Let $f(n)$ the sum, over all p in P, of the size of p. E.g. $P(3)=\{\{ \},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$, so $f(3)=0+1+1+1+2+2+2+3=12$. Prove by induction that $f(n)=n 2^{n-1}$. Hint: create $S(n)$ by adding one item to $S(n-1)$. Hint: see the last page of this document.
5. Consider a $0-1$ knapsack input with n items, each with a weight and value in $\{1, \ldots, 2 n\}$. Consider the brute force (BF) algorithm.
a) Explain why, over the whole algorithm, the number of the additions performed to sum the weight of each subset of items, is $n 2^{n-1}-2^{n}$. Hint: use the previous question.
b) Explain why the worstcase total time to perform the additions in a) is in $\Theta\left(n 2^{n} \lg n\right)$.
6. Let $a(n)=1.01^{n}, b(n)=2^{\sqrt{n}}$, and $c=\lim _{n \rightarrow \infty} a(n) / b(n)$. Does $c=0$? Does $c=\infty$? Justify your answer. Hint: $k^{n}=\left(k^{\sqrt{n}}\right)^{\sqrt{n}}$. Hint: last page.
7. Call a function $f(n)$ superpolynomial if, for any positive integer k, $\lim _{n \rightarrow \infty}\left(n^{k}\right) / f(n)=0$, and call it subexponential if, for any positive rational ε, $\lim _{n \rightarrow \infty} f(n) /(1+\varepsilon)^{n}=0$.

Consider a 0-1 knapsack instance with n items, each weight and value n bits: for this instance, input size $f(n)$ is in $\Theta\left(n^{2}\right)$ and DPW worstcase runtime $t(n)$ is in $\Theta\left(n^{4} 2^{n}\right)$ (see http://webdocs.cs.ualberta.ca/~hayward/204/jem/hard.html\#knapdp)
a) Prove that $t(n)$ is superpolynomial.
b) Prove that $t(n)$ is subexponential.
8. Let G (left) and H (right) be the graphs below. a) Prove that this bijection $f: V \leftrightarrow W$ is not an isomorphism.

j	0	1	2	3	4	5	6	7	8
$f(j)$	a	b	c	d	e	f	g	h	j

b) Continue from a): prove/disprove $G \cong H$.

9. Graph isomorphism is this problem:

Input. Two graphs $G_{0}=\left(V_{0}, E_{0}\right)$ and $G_{1}=\left(V_{1}, E_{1}\right)$.
Query. Is there an isomorphism $f: V_{0} \rightarrow V_{1}$?
Explain why graph isomorphism is in the class NP. Hint: is this a decision problem? If yes, is there a polytime verification algorithm for yes-instances?
10. Find a minimum set cover of these subsets:

11. a) Using the format of question 9 , give a careful definition of the set cover problem.
b) Explain why set cover is in the class NP. Hint: is this a decision problem? If yes, is there a polytime verification algorithm for yes-instances?

some answers

2. Proof: $P(n)$ has 2^{n-1} subsets that contain item n and 2^{n-1} subsets that do not, so

$$
\begin{aligned}
f(n)= & f(n-1)+2^{n-1} \text { from the subsets that contain item } n \\
& \quad+f(n-1) \text { from the subsets that do not } \\
= & (n-1) 2^{n-2}+2^{n-1}+(n-1) 2^{n-2} \\
= & 2(n-1) 2^{n-2}+2^{n-1} \\
= & (n-1) 2^{n-1}+2^{n-1} \\
= & n 2^{n-1}
\end{aligned} .
$$

3. a) The number of additions for a subset of size t is $t-1$, so we subtract 1 once for each subset, so 2^{n} times, so the total number of additions is $n 2^{n-1}-2^{n}=2^{n}(n-2) / 2$.
b) Each addition takes worst case $\Theta(\lg n)$ time: the maximum weight is $3 n$, which has about $\lg (3 n)=\lg (3)+\lg (n)$ bits. So the total time is in $\Theta\left(n 2^{n} \lg n\right)=\Theta\left(2^{n} n \lg n\right)$.
4.

$$
\begin{aligned}
\frac{1.01^{n}}{2^{\sqrt{n}}} & =\frac{\left(1.01^{\sqrt{n}}\right)^{\sqrt{n}}}{(2)^{\sqrt{n}}} \\
& =\left(\frac{1.01^{\sqrt{n}}}{2}\right)^{\sqrt{n}}
\end{aligned}
$$

and since $\lim _{n \rightarrow \infty} 1.01^{\sqrt{n}} / 2=\infty, \lim _{n \rightarrow \infty} a(n) / b(n)=\infty$.

