cmput 3042023 study questions 2

1. Rearrange the following lines of code, and indent properly, so that myroot (n) computes square roots using the old-school square root algorithm.

L = basehundred(n)
def myroot(n):
digit += 1
digit $=0$
for dd in L: \#dd next digit-pair from n
print(r)
print(r, '=', s+digit, '*', digit, '+ ',end='')
$\mathrm{q}, \mathrm{r}=0,0$ \# quotient, remainder
$\mathrm{q}, \mathrm{r}=10 * \mathrm{q}, 100 * r+\mathrm{dd}$
q, r = q + digit, r - (s+digit)*digit
return q, r
$\mathrm{s}=20 * \mathrm{q}$ \#LHS multiplier
while ((s+digit+1)*(digit+1) <= r):
2. Define $T(n)$ as the total number of def $f i b(n)$: calls to $\mathrm{fib}(\mathrm{)}$ made by the initial if ($\mathrm{n}<=1$): call fib(n).
return n
return fib(n-1) $+\mathrm{fib}(\mathrm{n}-2)$
a) Explain why $T(0)=T(1)=1$.
b) Explain why, for $n \geq 2, T(n)=1+T(n-1)+T(n-2)$.
c) Prove by induction on n that $T(n)=2 f(n+1)-1$, where $f(n)$ is Fibonacci (n).
d) Using c, prove that $T(n)$ is in $\Theta\left(g^{n}\right)$, where g is the golden ratio.
3. The Fibonacci number $f(n)$ is defined as 0 if n is 0,1 if n is 1 , and $f(n-$ 1) $+f(n-2)$ for all integers $n \geq 2$. Prove by induction on j that, for all non-negative integers j, the value of a after line 4 has executed exactly j times is $f(j)$.

```
def ifib(n): #line 0
    a,b = 0,1 #line 1
    for _ in range(n): #line 2
        print(a) #line 3
        a,b = b, a+b #line 4
    return a #line 5
```

4. Recall from class that the every-case runtime of the usual addition algorithm is in $\Theta(n)$, where n is the size (number of bits) of the input. Show that the worstcase runtime of the usual multiplication algorithm is in $\Theta\left(n^{2}\right)$. Justify carefully.
5. Usually, we talk about complexity of algorithms. Here, we talk about the complexity of a problem. We say that the worstcase runtime complexity of the addition problem is in $\Theta(n)$, because A) there is an algorithm that runs in $\Theta(n)$ time, and B) no algorithm runs in $o(n)$ time. In your own words, prove B.
6. For the longest increasing subsequence problem, what is the optimal substructure property that allows the design of a dynamic programming algorithm that runs in worstcase polytime?

For the following two problems, define $f(j)$ so that, for each index $j, f(j)$ is the length of a LIS ending at position j.
7. Trace the LIS algorithm from class on the following input. Explain in detail how you compute $f(0), f(1)$ and $f(2)$.

j	0	1	2	3	4	5	6	7	8	9
S	11	2	9	6	3	12	0	4	8	5
f										

8. Let S be the sequence $\left(s_{0}, s_{1}, \ldots, s_{9}\right)$. Define $f(j)$ so that, for each index $j, f(j)$ is the length of a LIS ending at position j. Assume that $f(9)=5$. Assume that $\left(s_{1}, s_{3}, s_{4}, s_{6}, s_{9}\right)$ is an increasing subsequence.

For each $f(j)$ below, give the set $Z(j)$ of possible values of $f(j)$ consistent with the above information.
a) Explain why $Z(0)=\{1\}$.
b) Explain why $Z(1)=\{1\}$.
c) Explain why $Z(2)=\{1,2\}$.
d) For each remaining j, give $Z(j)$. You do not have to justify your answer.

j	0	1	2	3	4	5	6	7	8	9
$Z(j)$	$\{1\}$	$\{1\}$	$\{1,2\}$	-----	-----	-----	-----	-----	-----	-----

9. For the matching below, for each unmatched pair of nodes (h, r) with h in $\{0,1,2,3\}$ and r in $\{A, B, C, D\}$, determine whether $\{h, r\}$ is an unhappy couple. Justify each answer.

10. For each bipartite preference system and matching below, is the matching stable? Justify.

11. a) Give all possible assignments of values to u, v, w, x below so the bipartite system is valid and the matching is stable. Hint: $\mathrm{u}, \mathrm{v}=1,0$ or 0,1 , same for w, x.

b) Repeat a) so that the system is valid and the matching is unstable.
