cmput 3042023 study questions 1

1. Recall http://webdocs.cs.ualberta.ca/~hayward/272/jem/collatz.html. Prove or disprove (if you can):
a) for all positive integers n, the last number printed by collatz(n) is 1 .
b) for all n in $\{1,2, \ldots, 10\}$, the last number printed by collatz (n) is 1 .
c) if the collatz conjecture fails for some integer, and if n_{0} is the smallest such integer, then n_{0} is odd.
2. Use the old-school square root algorithm from class: by hand, find the largest integer $t \leq \sqrt{762309}$. Show your work. Check your answer: https://github.com/ryanbhayward/algs/blob/master/numeric/old_sqrt.py
3. a) For an input of size (number of bits) n, an algorithm has runtime $\Theta\left(n^{2.5}\right)$. For $n=3.7 e 6$ (scientific notation: 3.7×10^{6}), the runtime is 11 s . What is your best guess for the runtime when $n=7.4 e 6$? Explain briefly. Show your work.
b) Is it possible that your guess in a) will be 10 times too small? Explain briefly.
4. Let $f(n)=2^{n}$ and $g(n)=1.7^{n}$. Prove or disprove: $f(n) \in O(g(n))$.
5. Recall iterative Fibonacci:
https://webdocs.cs.ualberta.ca/~hayward/304/jem/warmup.html\#ifib
a) Explain why the runtime of ifib(n$)$ is proportional to $\sum_{j=1}^{n} \lg (\mathrm{fib}(j))$.
b) Explain why the above sum is in $O\left(n^{2}\right)$.
c) Let $r(n)$ be the runtime for ifib(n). For a positive integer t, explain why we expect that $r\left(2^{t+1}\right) / r\left(2^{t}\right)$ will be around 4 .
6. Recall recursive fib(n):
```
def fib(n):
    if (n<=1): return n
    return fib(n-1) + fib(n-2)
```

Complete the proof of the following claim.
Claim. For all integers $n \geq 0$, fib(n) returns $f(n)$, where $f(n)$ is defined as 0 if n is 0,1 if n is 1 , and the sum of $f(n-1)$ and $f(n-2)$ when n is at least 2.

Proof. Argue by induction on n. The claim holds when n is 0 or 1 (why?). Let x be an integer greater than or equal to 2 . Assume that the claim holds for all values of n in the set $\{0,1, \ldots, x-1\}$. In order to complete the proof, we now want to show that the claim holds when n is x, i.e. that $\mathrm{fib}(\mathrm{x})$ returns $f(x)$.

So what happens when $\mathrm{fib}(\mathrm{x})$ executes? Well, $x \geq 2$, so the if test evaluates to false, so the program returns $f i b(x-1)+f i b(x-2)$.
(now finish the proof ...)
7. For non-negative integers x, y with $x<y$, prove that the runtime of the usual addition algorithm takes time $\Theta(\lg y)$.
8. For non-negative integers x, y with $x<y$, prove that the runtime of any addition algorithm takes time $\Omega(\lg y)$.
9. Repeat question 3 for runtime $\Theta\left(n^{2}\right)$.
10. Repeat question 3 for runtime $\Theta(n \lg n)$.

