QUIZ 8 - SOLUTIONS TO QUESTIONS 1-3

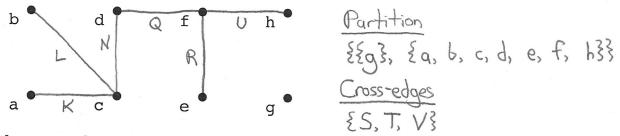


Recall: a *cut* of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph (above left), $\{\{w,x\}, \{y,z\}\}$ is a cut with cross-edges $\{F,G,H,J\}$. RKMC is the randomized Kruskal min cut algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

1. [2 marks] For the big graph, give each min cut (partition and cross-edges) ...

#	Partition	Cross-edges
1	{{a}, {b, c, d, e, f, g, h}}	{J, K}
2	{{h}, {a, b, c, d, e, f, g}}	{U, V}
3	{{a, b, c, d}, {e, f, g, h}}	{P, Q}

2. [3 marks] ... and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when edges are input in order LUQRKNTVSJMP.



3. [2 marks] Let G be a connected graph with a cut $\{X,Y\}$ with G[X] (the subgraph of G on the node set X) connected but G[Y] disconnected, with exactly two components $G[Y_1]$ and $G[Y_2]$. Prove or disprove: $\{X,Y\}$ is a min cut of G.

Because G is connected and G[Y] is disconnected, there must be at least one edge connecting G[X] and G[Y,]. Denote these edges as Ei.

Similarly, there must be at least one edge connecting G[X] and G[Y2]. Denote these edges as E2.

From the above, we see that both $\{X \cup Y_2, Y_1\} \& \{X \cup Y_1, Y_2\}$ are cuts of G, with sizes $|E_1|$ and $|E_2|$, respectively. We also see that cut $\{X,Y\}$ has size $|E_1| + |E_2|$. Since $|E_1| + |E_2| > |E_1|$ and $|E_1| + |E_2| > |E_2|$, $\{X,Y\}$ cannot be a min cut. (There are at least two smaller ones.)