Question 2

- a) Based on the definition for v_{j}^{\prime} which is set to be $\left\lfloor v_{j} \cdot \frac{n}{\epsilon \cdot v_{\max }}\right\rfloor$, the equation (2) holds.
- b) Consider the following:

$$
v_{j}^{\prime}=\left\lfloor v_{j} \cdot \frac{n}{\epsilon \cdot v_{\max }}\right\rfloor \Longrightarrow v_{j}^{\prime} \leq v_{j} \cdot \frac{n}{\epsilon \cdot v_{\max }} \Longrightarrow v_{j}^{\prime} \cdot \frac{\epsilon \cdot v_{\max }}{n} \leq v_{j}
$$

Then, we can sum over any set of items, say S^{\prime} :

$$
\sum_{j \in S^{\prime}} v_{j} \geq \sum_{j \in S^{\prime}} v_{j}^{\prime} \cdot \frac{\epsilon \cdot v_{\max }}{n}
$$

- c) Based on 4, we can say

$$
\sum_{j \in S^{\prime}} v_{j}^{\prime} \cdot \frac{\epsilon \cdot v_{\max }}{n}=\frac{\epsilon \cdot v_{\max }}{n} \cdot \operatorname{sum}_{j \in S^{\prime}} v_{j}^{\prime} \geq \frac{\epsilon \cdot v_{\max }}{n} \cdot\left(K \cdot \frac{n}{\epsilon \cdot v_{\max }}-n\right)
$$

Just to mention, the optimal assignment for the shrunken problem S^{\prime}, has a rescaled value of at least (4), that is why we can use the replacement.

