1. [$\mathbf{1}$ marks] Let s be the sum of the last 4 digits of your student id number. Let t be the sum of the digits of s. Let your quiz code u be $t(\bmod 3)$. E.g. if your student id is 1234567 , then s is $4+5+6+7=22, t$ is $2+2=4$, and u is $4(\bmod 3)=1$. write your s : \qquad write your t : \qquad write your u : \qquad
2. [$2+3$ marks] If your quiz code u is respectively $0,1,2$, use matrix M0, M1, M2 for this question. Consider the 2 -player 0 -sum matrix game with your matrix.

M0	3	-1	0	M1	3	0	-1	M2
0	3	-4	1	-4				
-2	0	1	-1	2	0	3	-3	0
-2	0	-3	4	0	1			

a) Assume that the row player plays the mixed strategy $(1 / 4,1 / 4,1 / 2)$.

What is the row player's expected score against column 1 ? \qquad against column 2 ? \qquad against column 3 ? \qquad
What is the column player's best choice? $(1,2$, or 3$)$ \qquad
b) The row player wants to find her minimax mixed strategy. Formulate this problem as an LP, and then explain your answer.

Q1 Solution:

Question 1 is straightforward. Take for example your student ID to be 126363 and so $\mathrm{s}=$ 18. Then $t=9$ and $u=0$.

Q2.a Solution:

We choose matrix M0 based on our u. On any given round of the game, there is an $x_{i} y_{j}$ chance that Row and Column will play i th and j th moves, respectively. Therefore the expected (average) payoff is

$$
\sum_{i, j} G_{i j} \cdot \operatorname{Prob}[\text { Row plays } i, \text { Column plays } j]=\sum_{i, j} G_{i j} x_{i} y_{j} \text {. }
$$

So the row player's expected score against column 1 would just be $\frac{1}{4} \cdot 3+\frac{1}{4} \cdot 0+\frac{1}{2} \cdot-2=\frac{-1}{4}$. Similarly So the row player's expected score against column 2 would just be $\frac{1}{4} \cdot-1+\frac{1}{4}$. $3+\frac{1}{2} \cdot 0=\frac{1}{2}$.

Lastly, the row player's expected score against column 3 would just be $\frac{1}{4} \cdot 0+\frac{1}{4} \cdot-4+\frac{1}{2} \cdot 1=$ $\frac{-1}{2}$.
Clearly the column player's best choice would be choice 3 .

Q2.b Solution:

Now if Row wants to find her minimax mixed strategy she knows that her best response will achieve an expected payoff of $\min \left\{3 x_{1}-2 x_{3},-x_{1}+3 x_{2},-4 x_{2}+x_{3}\right\}$. She should choose \mathbf{x} defensively to maximize her payoff against this best response: Pick $\left(x_{1}, x_{2}, x_{3}\right)$ that maximizes $\underbrace{\min \left\{3 x_{1}-2 x_{3},-x_{1}+3 x_{2},-4 x_{2}+x_{3}\right\}}_{\text {payoff from Column's best response to } \mathbf{x}}$ This choice of x_{i} 's gives Row the best possible guarantee about her expected payoff. And we will now see that it can be found by an LP! The LP is as follows

$$
\begin{aligned}
\max & z \\
-3 x_{1}+2 x_{3}+z & \leq 0 \\
x_{1}-3 x_{2}+z & \leq 0 \\
4 x_{2}-x_{3}+z & \leq 0 \\
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

2. [1 + 4 + marks] You manage a communications network with users $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and bandwidths shown in the figure below (D is no longer involved in this project). You need to establish a connection between A-B, A-C, and B-C. These connections pay 5, 4,3 , dollars respectively per unit bandwidth. Between each pair of users at least 7 units must be routed.

Each connection has two possible routes. For A-B, xAB is traffic volume along A-$\mathrm{a}-\mathrm{b}-\mathrm{B}, \mathrm{yAB}$ is volume along $\mathrm{A}-\mathrm{a}-\mathrm{d}-\mathrm{c}-\mathrm{b}-\mathrm{B}$; define $\mathrm{xBC}, \mathrm{yBC}$, similarly; $\mathrm{xAC}, \mathrm{yAC}$ is traffic along A-a-b-c-C, A-a-d-c-D respectively. You want to maximize this network's revenue. Using the variables above, formulate this problem as an LP:

Q2.a b Solution:

This is a linear program. We have variables for each connection and each path (long or hort); for example, $x_{A B}$ is the short-path bandwidth allocated to the connection between A nd B, and $y_{A B}$ the long-path bandwidth for this same connection. The objective function and inequalities clearly would be after accounting for all the edge connections would be

$$
\begin{aligned}
& \max 5 x_{A B}+5 y_{A B}+3 x_{B C}+3 y_{B C}+4 x_{A C}+4 y_{A C} \\
& x_{A B}+y_{A B}+x_{B C}+y_{B C} \leq 18 \quad[\text { edge }(b, B)] \\
& x_{A B}+y_{A B}+x_{A C}+y_{A C} \leq 15 \quad[\text { edge }(a, A)] \\
& x_{B C}+y_{B C}+x_{A C}+y_{A C} \leq 20 \quad[\text { edge }(c, C)] \\
& x_{A B}+y_{B C}+x_{A C} \leq 16 \quad[\text { edge }(a, b)] \\
& y_{A B}+x_{B C}+x_{A C} \leq 19 \quad \quad[\text { edge }(b, c)] \\
& y_{A B}+y_{B C}+y_{A C} \leq 17 \\
& y_{A B}+y_{B C}+y_{A C} \leq 21 \quad \quad[\text { edge }(a, d)] \\
& x_{A B}+y_{A B} \geq 7 \\
& x_{B C}+y_{B C} \geq 7 \\
& x_{A C}+y_{A C} \geq 7 \\
& x_{A B}, y_{A B}, x_{B C}, y_{B C}, y_{A C}, y_{A C} \geq 0
\end{aligned}
$$

Q2.c Solution:

Therefore a feasible solution would just be to set $x_{A B}=7, x_{B C}=7, x_{A C}=6$ and $y_{A B}=$ $0, y_{B C}=0, y_{A C}=1$. This clearly satisfies all the constraints and the objective function value would just be now 84 .

