quiz 4 cmput 304 fall 2022

Solution for the first and the second variants of question 1:

Question 1, version 1
a) $\min 2 y_{1}+3 y_{2}+15 y_{3}$, subject to

$$
\begin{aligned}
& y_{1}+6 y_{3} \geq 1 \\
& y_{2}+2 y_{3} \geq 3 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

b)

c) $(1.5,3) 10.5$
d) Full marks for:

- citing simplex or hill-climbing
- giving a geonetric description
- invoking the dual correctly (i.e. state that it has the same solution as the primal \& is an upper bound)
For this quir, we also accepted station that you tried each vertex

Solution for the third variant of question 1:

$$
\begin{aligned}
& \text { Question 1, version } 3 \\
& \text { a) } \min 4 y_{1}+6 y_{2}+15 y_{3} \\
& y_{1}+6 y_{3} \geq 1 \\
& y_{2}+2 y_{3} \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0 \\
& \text { b) } \\
& \text { c) }(0.5,6) 6.5 \\
& \text { d) See version } 1
\end{aligned}
$$

Solution for a variant of question 2:

\downarrow

All the vertices reachable from s in the last residual network are: s, b, c, e, a. Since t is not in this list, there is no augmenting path therefore we found a maximum flow.

Note that $S:=\{s, a, b, c, e\}$ form a minimum cut and the value of cut S is the sum of capacity of edges exiting S minus the capacity of the edges entering S in the ORIGINAL GRAPH: $1+1+2=4$. So the final answer is $4\{s, a, b, c, e\}$.

