1. Solution:

$$1)f = (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$

Then Let $x_1 = F, x_2 = T, x_3 = F, x_4 = T$, which makes f satisfied and hence, we can find the independent set to be node x_2 from first triangle, x_2 from second triangle, x_4 from third triangle, $\sim x_1$ from the fourth triangle, $\sim x_3$ from the fifth triangle, x_2 from the sixth triangle, x_4 from the seventh triangle, and $\sim x_2$ from the eighth triangle. 2)

$$f = (x_2 \lor \neg x_3 \lor \neg x_4) \land (x_2 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor x_1) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor x_4) \land (x_3 \lor x_4 \lor \neg x_1) \land (x_2 \lor x_4 \lor x_1) \land (\neg x_2 \lor \neg x_3 \lor \neg x_1)$$

Then Let $x_1 = T, x_2 = F, x_3 = T, x_4 = F$, which makes f satisfied and hence, we can find the independent set to be node $\sim x_4$ from first triangle, x_3 from second triangle, x_1 from third triangle, x_3 from the fourth triangle, x_3 from the fifth triangle, x_3 from the sixth triangle, x_1 from the seventh triangle, and x_2 from the eighth triangle. 3)

$$f = (x_3 \lor x_1 \lor x_2) \land (\neg x_3 \lor \neg x_4 \lor \neg x_2) \land (\neg x_3 \lor x_4 \lor x_1) \land (x_4 \lor x_1 \lor \neg x_2) \land (\neg x_3 \lor \neg x_4 \lor x_2) \land (\neg x_3 \lor x_4 \lor \neg x_1)(x_3 \lor \neg x_4 \lor \neg x_1) \land (x_3 \lor x_4 \lor \neg x_1)$$

Then Let $x_1 = F, x_2 = T, x_3 = F, x_4 = T$, which makes f satisfied and hence, we can find the independent set to

be node x_2 from first triangle, $\sim x_3$ from second triangle, x_4 from third triangle, x_4 from the fourth triangle, x_2 from the fifth triangle, x_4 from the sixth triangle, $\sim x_1$ from the seventh triangle, and x_4 from the eighth triangle.

2. Solution:

(a) To prove that a problem is in NP-complete we need to shows 2 things i.e it is in NP class and it can be reduced to an already existing NP-hard problem.

Step 1: 3-SAT is in NP class (Already given in the question)

Step 2: Let's try to take a already NP-hard problem which is a SAT problem.We need to show that it is reducible to 3-SAT problem.

Now, $f = (X \land Y \lor Z)$

- $= (X \lor Y) \land (X \lor Z)$
- $= (X \lor Y \lor Z * Z') \land (X \lor Z \lor Y * Y')$
- $= (X \lor Y \lor Z') \land (X \lor Y \lor Z) \land (X \lor Z \lor Y) \land (X \lor Z \lor Y')$
- $= (X \lor Y \lor Z) \land (X \lor Y \lor Z') \land (X \lor Y' \lor Z)$

Since SAT is reducible to 3-SAT hence 3-SAT is NP hard problem.

From step 1 and 2 we can prove that 3-SAT is in NP-Complete.

(b) Here we can use transitive property to show that kindependent set to sat is a poly-time answer preserving transformation.

Transitive property : $P_1 \propto P_2$ and $P_2 \propto P_3$ then $P_1 \propto P_3$.

Now we know there exist poly-time answer preserv-

ing reduction of SAT to k-clique and similarly from k-clique to k-independent set. Hence using transitive property we can say, there exists an answer preserving poly-time transformation from k-independent set to SAT.