quiz 2 cmput 304 fall 2022

Each question has a multiple variants, here is a solution to one of them.

Solution for 1:
Part (a):
part (b): Note that we multiply every digits of the second number to every digits of the first number and since both numbers have n bits, we are doing n^{2} such operations so the running time is $\Omega\left(n^{2}\right)$. Also note that, we are adding two numbers $n-1$ times. Each number involve in the addition operation has up to $2 n$ bits. Since each addition operation takes $\Omega(n)$ time, in total for adding all these numbers, we spend $\Omega\left(n^{2}\right)$ time. So in total our algorithm runs in $\Omega\left(n^{2}\right)$.
It is easy to see that the running time of this multiplication algorithm is in fact $\theta\left(n^{2}\right)$.
2. If the two graphs are isomorphic, complete the isomorphism below by filling in the blanks. If the graphs are not isomorphic, sketch a proof of why (you do not have to give all details).
Solution: All the 3 problem sets in the quiz had both the graphs isomorphic. One of the graphs that came in the quiz is as follows.

| isomorphism: | left graph node | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | right graph node | \ldots | | | | | | |

The isomorphism is pretty straightforward by noticing the degree of each vertex in the left and right graph. 7 clearly gets mapped to D, 6 gets mapped to G, 5 gets mapped to $\mathrm{F}, 4$ gets mapped to C, 3 gets mapped to B, 2 gets mapped to A and lastly 1 gets mapped to E .

Hence the isomorphism labels are given by D, G, F, C, B, A, E. Similarly for the other graphs, we can do the same way.
3.

Version 1
Capacity: 6

item 1		2	3

value 3112
weight $21 \begin{array}{lll}2 & 1 & 3\end{array}$
K[0] 0000
K[1] $0 \begin{array}{llll} & 1 & 2 & 2\end{array}$
$\begin{array}{lllll}\mathrm{K} & \text { 2] } & 3 & 3 & 3\end{array}$
K[3] $3 \quad 4 \quad 5 \quad 5$
K[4] $3 \quad 4 \quad 6 \quad 6$
K[5] $3 \quad 4 \quad 6 \quad 6$
$\begin{array}{lllll}K[6] & 3 & 4 & 6 & 7\end{array}$

Version 2

Capacity: 6
item $1 \begin{array}{llll} & 2 & 3\end{array}$
value $\begin{array}{llll}4 & 1 & 2\end{array}$
weight 3113

$\begin{array}{lllll}\mathrm{K} & 0] & 0 & 0 & 0\end{array}$
K[1] $0 \begin{array}{llll} & 1 & 2 & 2\end{array}$
$\begin{array}{lllll}\mathrm{K} & 2] & 0 & 1 & 3\end{array}$
K[3] 4

K[4] 4 5 6
$\begin{array}{lllll}K[5] & 4 & 5 & 7 & 7\end{array}$
$\begin{array}{lllll}\text { K [6] } & 4 & 5 & 7 & 7\end{array}$

Version 3

Capacity: 6
item $1 \begin{array}{llll} & 2 & 3\end{array}$
value $\begin{array}{llll}4 & 1 & 2 & 2\end{array}$
weight $\begin{array}{llll}3 & 1 & 3 & 1\end{array}$

$\begin{array}{lllll}\mathrm{K} & 0] & 0 & 0 & 0\end{array}$
K[1] $0 \begin{array}{llll} & 1 & 1 & 2\end{array}$
$\begin{array}{lllll}\mathrm{K} & 2] & 0 & 1 & 1\end{array}$
K[3] 4

K[4] 4 5 5
$\begin{array}{lllll}\mathrm{K}[5] & 4 & 5 & 5 & 7\end{array}$

K[6] $4 \quad 5 \quad 6 \quad 7$

