Quiz 1 Solutions 304 Fall 2022

1. Interpret the 4 th and 5 th digits of your student number as a 2-digit decimal number n. E.g. if your student number is ${ }^{* * *} 70^{* *}$, then n is 70 . If n is square - $0,1,4,9,16,25$, $36,49,64,81$ - then increment n by 5 . Now multiply n by 10^{6}. E.g. if your student number is ${ }^{* * *} 70^{* *}$, then n is now 70000000 ; if your student number is ${ }^{* * *} 36^{* *}$, then n is now 41000000 .

By hand, using the algorithm from class, find the largest integer t such that $t \leq \sqrt{n}$. Show your work.

Solution: Taking the case where n is 41177 .
First let's break this number such that we have : $\overline{4} \overline{11} \overline{77}$
Step 1: Let's find x such that $x * x \leq 4$, i.e $\mathrm{x}=2$
Now, dividend is 4 and divisor is x .
$\Longrightarrow x=2$ is the leftmost digit of our quotient.
Remainder is 0 we now carry the next two digits 11 .
Step 2: Let's find y such that $(2 * 2 * 10+y) * y \leq 11$, i.e $\mathrm{y}=0$

Now, dividend is 11 and divisor is 4 y i.e 40.
$\Longrightarrow y=0$ is the second leftmost digit of our quotient
Remainder is 11 , we now carry the next two digit 77 .
Step 3: Let's find z such that $(2 * 20 * 10+z) * z \leq 1177$, i.e $\mathrm{z}=2$

Now, dividend is 1177 and divisor is $402 . \Longrightarrow z=2$ is the third leftmost digit of our quotient
Now after this the remainder is 373 .
So we got xyz as the decimal number which is 202 as the largest $t \leq \sqrt{41177}$.
2. Let $f(n)=2^{n}$. Let $g(n)=1.7^{n}$. Prove or disprove: $f(n) \in$ $O(g(n))$.
solution: We prove $f(n) \notin g(n)$ by way of contradiction. Suppose $f(n) \in O(g(n))$ so by definition there is a constants $c>0$, and an integer n_{0} such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.
At this point we can argue in number of ways.
First argument:

$$
\begin{aligned}
2^{n} \leq c \cdot 1.7^{n} & \Longleftrightarrow\left(\frac{2}{1.7}\right)^{n} \leq c \\
& \Longleftrightarrow n \cdot \log _{c}\left(\frac{2}{1.7}\right) \leq \log _{c}(c)=1 \\
& \Longleftrightarrow n \leq \frac{1}{\log _{c}\left(\frac{2}{1.7}\right)},
\end{aligned}
$$

where the last line follows because $\frac{2}{1.7}>1$ so $\log _{c}\left(\frac{2}{1.7}\right)>0$ and dividing an inequality by a positive number preserves the inequality.
So for all $n>\frac{1}{\log _{c}\left(\frac{2}{1.7}\right)}, f(n)>c \cdot g(n)$, a contradiction.
Second argument: $f(n) \leq c \cdot g(n)$ for $n \geq n_{0}$ so $\frac{f(n)}{g(n)} \leq$ c for $n \geq n_{0}$ so $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c$ however $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=$ $\lim _{n \rightarrow \infty} \frac{2^{n}}{1.7^{n}}=\lim _{n \rightarrow \infty}\left(\frac{2}{1.7}\right)^{n}=\infty$ where the last equality follows since $\frac{2}{1.7}>0$, a contradiction.
Remarks: the $g(n)$ might have been different for you in the quiz like $g(n)=1.6^{n}$ or $g(n)=1.8^{n}$ but the solutions are similar.
3. Define $f(n)$ as 0 if n is 0,1 if n is 1 , and $f(n-1)+f(n-2)$ if n is an integer greater than or equal to 2 . Consider this python procedure:

```
def fib(n):
    if (n<=1):
        return n
    return fib(n-1) + fib(n-2)
```

Claim. For all integers $n \geq 0$, fib(n) returns $f(n)$.
Proof. Argue by induction on n. The case when n is 0 or 1 was proved in the lecture.
Fix n to be some integer t greater than or equal to 2 . Assume that the claim holds for all values of n in the set $\{0,1, \ldots, t-1\}$. In order to complete the proof, we now want to show that the claim holds when n is t, i.e. that fib (t) returns $f(t)$.
So what happens when $\mathrm{fib}(\mathrm{t})$ executes? Well, $t \geq 2$, so the if condition evaluates to false, so the program returns fib(t-1)+fib(t-2).
(now you complete the proof ...)
Solution: But we already know that $\mathrm{fib}(\mathrm{t}-1)+\mathrm{fib}(\mathrm{t}-2)=$ $f(t-1)+f(t-2)$, since $\mathrm{fib}(\mathrm{t}-1)=f(t-1)$ and fib(t-2) $=f(t-2)$. However, $f(t-1)+f(t-2)=f(t)$ based on the definition of $f(n)$. Hence, $\mathrm{fib}(\mathrm{t})=f(t)$, and the proof is complete.

