2020 cmput 304 final

1. Two sets interfere if they have 4 or more common elements. This is problem
NICS: given integers n and k and a collection C = {S0, S1, ...} of subsets of
integers {0, 1, ...n}, is there a collection T of exactly k subsets from C, such that

each pair of subsets Sx, Sy in T is non-interfering?

E.g. for the problem at right, {S1, S2, S4} is a NICS with k£ = 3: S1 and S2 do
not interfere (3 elements in common), S1 and S4 do not interfere (0 elements in

common) S2 and S4 do not interfere (2 elements in common).

01234567289 0123456738
SO * % — % — % * — SO - % * % — % — %
S1 % % % — % — — % x S1 % % — % — % * — x
S2 k — k% — *x x % — x S2 k % * — k% — — x x
S3 - % - — k% — — % X S3 k% — * — *x % * — X
S4 - % * % — % — *x S4 - - % — - — - % -

A) (3 marks) For the collection above left, give a NICS with & = 3 or explain

briefly why there is none.

Answer only one of B) and C). (C is hard: for 5 marks instead of 12, answer
B instead of C.) (If you answer both B and C, we will ignore your answer to C

and mark only B.)

B) (5 marks) Prove that problem NICS is in NP.

C) (12 marks) Assume that problem NICS is in NP.

Prove or disprove: problem NICS is NP-complete.

2. Below is code (with some print statements removed) from class github repo
iterative backtracking sat-solver backsat-v2.py. Answer only one of A) and
B). (B is hard: for 10 marks instead of 15, answer A instead of B.) (If you answer

both A and B, we will ignore your answer to B and mark only A.)

A) (10 marks) Give empirical evidence (e.g. generate a sequence of inputs, and

track the number of iterations)
that worst-case runtime for backsat (f,a,v)

when input is a 2-sat formula is polynomial ... or ...

that worst-case runtime for backsat(f,a,v)

when input is a 2-sat formula is super-polynomial.

B) (15 marks) Prove or disprove:
worst-case runtime for backsat (f,a,v)

when input is a 2-sat formula is polynomial.

def backsat(f, a, v): # formula, assignment, verbose
itns, candidates = 0, [] # list of partial solutions
while True:
itns += 1
if sat(f):
return f, a
if unsat(a):
if len(candidates) > O:
f, a = candidates.pop()
else:
return f, a, itns #
else: # f != empty list, a != empty string
ndx = ind_short (f)
lenj = len(f[ndx])
if lenj == 1: # fix literal
f, a = fix_literal(f[ndx][0], f, a, V)
elif lenj >= 2: #try both possible values
fcopy, acopy = deepcopy(f), a
f, a = fix_literal(f[ndx][0], f, a, V)

newf, newa

fix_literal(-fcopy[ndx] [0],fcopy,acopy,v)

candidates.append((newf, newa))

3. You manage a communications network with users A,B,C,D and bandwidths
shown in the figure below. You need to establish a connection between each pair
of users except for B and D (they never communicate). Connections A-B, A-C,
A-D, B-C, C-D, pay 5, 2, 3, 1, 4 dollars respectively per unit bandwidth. Between

each pair of users, at least 3 units must be routed.

N =
\B /K,x
23 /25
TS s
b I R,
+~ 14

11 17}
12
(a (a)
%
. ™
C’ \I_))

There are two possible routes for every connection. For connection A-B, let xAB
be the traffic volume routed A-a-b-B (the short way) and yAB the volume routed
A-a-d-c-b-B (the long way). Define xBC, yBC, xCD, yCD, xAD, yAD similarly.
Let xAC be the volume routed A-a-b-c-C and yAC the volume routed A-a-d-c-C.

You want to maximize this network’s revenue
formulate this problem as a linear program.

optimal solution.

A) Give the objective function.

B) Give the system of inequalities.

C) Give a feasible solution.

. Using the variables defined above,

You do not need to find an

4. A. Give the dual of this linear program (LP):

max 4r; + 3x2 + a3

s.t. ro + 3wz < 5
2:61 — 4:63 < —1
I + X9 + 3 S 6

B. Give an easily verified proof that the optimal value of the LP is at most 16.

5. In short form, we write 2-sat formula f (x1 Vx2) A (21 V —z2) A (521 V —29) as
[1 2] [1 -2]1[-1 -2]. The implication digraph D(f) (below left) has two strongly
connected components (SCCs): X={-2,1} and Y={-1,2}. An ordering (Cy, C1,...)
of the SCCs of a digraph is good if, for each pair of indices 7 < k, there are no
implications from any literal in C; to any literal in Cj. E.g. for D(f), the ordering
(X,Y) is good — there are no implications from X to Y — but the ordering (Y,X) is
not good — there is an implication from Y to X. (X,Y) is the only good ordering
for D(f). The implication digraph D(g) (below right) has two good orderings:
({1}, {-2},{2},{-1}) and ({1},{2},{-2},{-1}).

T
LY l ,r=

(2)
(D)

ik |'_."'|_ I\.- i

S,

)

ht--l'_."l'_

.
L b2 |
! r

P
%

A) For formula h below, give a good ordering of D(h). (Within each SCC, write el-

ements in sorted order, from smallest integer to largest integer.) Explain briefly.
= [-2 -4][-2 -1] [-2 1][-6 -8] [-8 5][-3 1]

[-7 51[7 3] [7 6]1[8 2]1[6 4]
B) Give the number of good orderings of D(h). Explain briefly.
C) Give

e cither a satisfying assignment of values T /F to variables x; ... xg of h, written
like this: TF FTFF T F. Explain briefly.

e or a variable t — so, from 1 to 8 — and an SCC of D(h) that includes both
t and -t. Explain briefly.

