
2020 cmput 304 final

1. Two sets interfere if they have 4 or more common elements. This is problem

NICS: given integers n and k and a collection C = {S0, S1, . . . } of subsets of

integers {0, 1, . . . n}, is there a collection T of exactly k subsets from C, such that

each pair of subsets Sx, Sy in T is non-interfering?

E.g. for the problem at right, {S1, S2, S4} is a NICS with k = 3: S1 and S2 do

not interfere (3 elements in common), S1 and S4 do not interfere (0 elements in

common) S2 and S4 do not interfere (2 elements in common).

0 1 2 3 4 5 6 7 8 9

S0 * * - * - * * - *

S1 * * * - * - - * *

S2 * - * - * * * - *

S3 - * - - * - - * *

S4 - * * * - * - * *

0 1 2 3 4 5 6 7 8

S0 - * * * - * - * *

S1 * * - * - * * - *

S2 * * * - * - - * *

S3 * - * - * * * - *

S4 - - * - - - - * -

A) (3 marks) For the collection above left, give a NICS with k = 3 or explain

briefly why there is none.

Answer only one of B) and C). (C is hard: for 5 marks instead of 12, answer

B instead of C.) (If you answer both B and C, we will ignore your answer to C

and mark only B.)

B) (5 marks) Prove that problem NICS is in NP.

C) (12 marks) Assume that problem NICS is in NP.

Prove or disprove: problem NICS is NP-complete.



2. Below is code (with some print statements removed) from class github repo

iterative backtracking sat-solver backsat-v2.py. Answer only one of A) and

B). (B is hard: for 10 marks instead of 15, answer A instead of B.) (If you answer

both A and B, we will ignore your answer to B and mark only A.)

A) (10 marks) Give empirical evidence (e.g. generate a sequence of inputs, and

track the number of iterations)

that worst-case runtime for backsat(f,a,v)

when input is a 2-sat formula is polynomial . . . or . . .

that worst-case runtime for backsat(f,a,v)

when input is a 2-sat formula is super-polynomial.

B) (15 marks) Prove or disprove:

worst-case runtime for backsat(f,a,v)

when input is a 2-sat formula is polynomial.



def backsat(f, a, v): # formula, assignment, verbose

itns, candidates = 0, [] # list of partial solutions

while True:

itns += 1

if sat(f):

return f, a

if unsat(a):

if len(candidates) > 0:

f, a = candidates.pop()

else:

return f, a, itns #

else: # f != empty list, a != empty string

ndx = ind_short(f)

lenj = len(f[ndx])

if lenj == 1: # fix literal

f, a = fix_literal(f[ndx][0], f, a, v)

elif lenj >= 2: #try both possible values

fcopy, acopy = deepcopy(f), a

f, a = fix_literal(f[ndx][0], f, a, v)

newf, newa = fix_literal(-fcopy[ndx][0],fcopy,acopy,v)

candidates.append((newf, newa))



3. You manage a communications network with users A,B,C,D and bandwidths

shown in the figure below. You need to establish a connection between each pair

of users except for B and D (they never communicate). Connections A-B, A-C,

A-D, B-C, C-D, pay 5, 2, 3, 1, 4 dollars respectively per unit bandwidth. Between

each pair of users, at least 3 units must be routed.

There are two possible routes for every connection. For connection A-B, let xAB

be the traffic volume routed A-a-b-B (the short way) and yAB the volume routed

A-a-d-c-b-B (the long way). Define xBC, yBC, xCD, yCD, xAD, yAD similarly.

Let xAC be the volume routed A-a-b-c-C and yAC the volume routed A-a-d-c-C.



You want to maximize this network’s revenue. Using the variables defined above,

formulate this problem as a linear program. You do not need to find an

optimal solution.

A) Give the objective function.

B) Give the system of inequalities.

C) Give a feasible solution.



4. A. Give the dual of this linear program (LP):

max 4x1 + 3x2 + x3

s.t. x2 + 3x3 ≤ 5

2x1 − 4x3 ≤ −1

x1 + x2 + x3 ≤ 6

B. Give an easily verified proof that the optimal value of the LP is at most 16.



5. In short form, we write 2-sat formula f (x1∨x2)∧ (x1∨¬x2)∧ (¬x1∨¬x2) as

[1 2][1 -2][-1 -2]. The implication digraph D(f) (below left) has two strongly

connected components (SCCs): X={-2,1} and Y={-1,2}. An ordering (C0, C1, . . .)

of the SCCs of a digraph is good if, for each pair of indices j < k, there are no

implications from any literal in Cj to any literal in Ck. E.g. for D(f), the ordering

(X,Y) is good — there are no implications from X to Y— but the ordering (Y,X) is

not good — there is an implication from Y to X. (X,Y) is the only good ordering

for D(f). The implication digraph D(g) (below right) has two good orderings:

({1},{-2},{2},{-1}) and ({1},{2},{-2},{-1}).

A) For formula h below, give a good ordering of D(h). (Within each SCC, write el-

ements in sorted order, from smallest integer to largest integer.) Explain briefly.

h = [-2 -4][-2 -1] [-2 1][-6 -8] [-8 5][-3 1]

[-7 5][7 3] [7 6][8 2][6 4]

B) Give the number of good orderings of D(h). Explain briefly.

C) Give

• either a satisfying assignment of values T/F to variables x1 . . .x8 of h, written

like this: T F F T F F T F. Explain briefly.

• or a variable t — so, from 1 to 8 — and an SCC of D(h) that includes both

t and -t. Explain briefly.


