
first name last name id#

2019 cmput304 3 hr closed book no devices 5 pages (8 marks/page) page 1

1. At right is the implication digraph for boolean formula f = (x1 ∨x2)∧ (¬x2 ∨x3).

In short form, we write f = (1 2)(−2 3). Below, on the nodes, draw the implication

digraph D for g =(-1 2)(1 3)(1 6)(2 -5)(-3 4)(4 -8)(-4 -8)(-5 -6)(5 8)(6 7)(-7 -8).

2. On the digraph above, circle each strongly connected component of D.

Below, draw the reduced digraph D′ in which each scc of D is replaced with a single node.

3. For g, either

below left give a satisfying assignment or below right explain why g is unsatisfiable.

SATISFYING ASSIGNMENT g is unsatisfiable because ...

variable x1 x2 x3 x4 x5 x6 x7 x8

0/1 value _ _ _ _ _ _ _ _

first name last name id#

2019 cmput304 3 hr closed book no devices 5 pages (8 marks/page) page 2

4.

Above right is a network: arc labels show capacities. Above left is a flow in this network: arc labels show

flow volume. On the digraph below left, show the residual digraph for the above flow. You might have to add

extra arcs. On the digraph below right, show a maximum s-t flow for the above network and a min s-t cut

(by circling the node set that forms one part of the cut).

ROUGH WORK BELOW WILL NOT BE MARKED

first name last name id#

2019 cmput304 3 hr closed book no devices 5 pages (8 marks/page) page 3

5. Complete this definition: an algorithm is polynomial time if there is a nonnegative constant t such that, for

every instance with n, the runtime is in O().

6. For weights [5, 8, 6, 7], values [6, 9, 8, 10], and ca-

pacity 13, give the missing entries of K[w][j] (rows 7, 11-

13) from this execution of the dynamic-programming-by-

weight (DPBW) knapsack algorithm.

...

4 0 0 0 0 0

5 0 6 6 6 6

6 0 6 6 8 8

7 0 _ _ _ _

8 0 6 9 9 10

9 0 6 9 9 10

10 0 6 9 9 10

11 0 _ _ _ _

12 0 _ _ _ _

13 0 _ _ _ _

7. Consider an instance to the knapsack problem with m items, each with weight and value in the range

[2m−1, 2m−1], and with capacity W = .75×m×2m. As a function of m, the number of bits needed to represent

this instance is in Θ(). Explain briefly.

8. Let n be the number of bits from the previous question. DPBW knapsack runtime is in (circle one)

O(n× 2
√
n) O(n× 2logn) O(n× 2n) O(n2 × 2

√
n) O(n2 × 2logn) O(n2 × 2n) . Explain briefly.

first name last name id#

2019 cmput304 3 hr closed book no devices 5 pages (8 marks/page) page 4

9. Hamiltonian cycle problem (HCP) asks whether an input graph has a cycle (c1, c2, . . . , cn) that includes all n

nodes. Travelling sales problem (TSP) asks whether an input weighted graph has a hamiltonian cycle whose

weight is at most a given integer k. TSPT is TSP where weights satisfy the triangle inequality: for each graph

triangle a, b, c, w(a, b) ≤ w(a, c) + w(b, c). Assume HCP is NP-complete. Assume TSPT is in NP. Prove TSPT

is in NP-complete. What is your overall plan in this proof? (circle a, b) a) Give a polytime answer-

preserving transformation from HCP instances to TSPT instances. b) Give a polytime answer-preserving

transformation from TSPT instances to HCP instances.

HERE IN AT MOST 60 WORDS describe your transformation

HERE IN AT MOST 60 WORDS explain why your transformation is polytime

HERE IN AT MOST 60 WORDS explain why your transformation is answer-preserving

first name last name id#

2019 cmput304 3 hr closed book no devices 5 pages (8 marks/page) page 5

10. def solve(f, a): # satisfiability formula f, boolean assignment a

1 if a == ’’ or len(f)==0: return f, a # unsatisfiable or satisfied

2 t = f.index(min(f,key=len)) # clause with fewest literals

3 if len(f[t]) == 0: return f, ’’ # clause empty so unsatisfiable

4 if len(f[t]) == 1: # unit clause so no choice

5 newf, newa = fix_and_propagate(f[t][0], f, a)

6 return solve(newf, newa)

7 literal = f[t][0] # 1st literal in shortest clause

8 newf, newa = fix_and_propagate(literal, f, a) # set literal TRUE

9 if newa = ’’: # this caused contradiction

10 newf, newa = fix_and_propagate(-literal, f, a) # set literal FALSE

11 return solve(newf, newa)

12 if len(newf)==0: return f, a # if return, satisfied: if not, newa ok so far

13 return solve(newf, newa)

f is a list of clauses, each clause is a list of literals. Each character of string a is ’0’ or ’1’ or ’?’ (false, true,

unassigned). f has n variables, at most 10×n clauses, each with at most 3 literals. Each fix_and_propagate()

call takes Θ(n) time for each literal that it assigns. Each line 2 call takes Θ(n) time. len() takes time

proportional to the length. Below, using big O notation, give a recurrence relation for r(k), the worstcase

runtime for solve(f,a) when a has exactly k unassigned literals.

Case A. r(k) = O(k × n) if solve(f, a) makes no recursive call to solve()

because in the worst case fix_and_propagate() on line (fill in blank) assigns enough

literals to satisfy f and execution returns on line .

Case B. r(k) = O() + r() if solve(f, a) calls solve() on line 6

after exactly j literals were assigned on line 5.

Case C. r(k) = O() + r(k − j) if solve(f, a) calls solve() on line 11 after at most n

literals were assigned on line 8 and exactly j literals were assigned on line 10.

Case D. r(k) = O() + r() if solve(f, a) calls solve() on line 13

after exactly j literals were assigned on line 8.

For each of B,C,D, the size of the parameter to r on the right-hand-side of the equation

(circle one) can be bigger than k can be as big as k is less than k .

This algorithm (circle one) is is not polytime. Justify IN AT MOST 30 WORDS.

Hint: this algorithm might not be correct.

