first name	last name			
2019 caput 304	3 hr	closed book	no devices	5 pages (8 marks/page)

1. At right is the implication digraph for boolean formula $f=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$. In short form, we write $f=(12)(-23)$. Below, on the nodes, draw the implication digraph D for $g=(-12)(13)(16)(2-5)(-34)(4-8)(-4-8)(-5-6)(58)(67)(-7-8)$.

-1)

(3)
-5
(8)
-7)

-4)
(7)
-8)
(4)
(5)
(-6)
-3
(1)
(2)
2. On the digraph above, circle each strongly connected component of D.

Below, draw the reduced digraph D^{\prime} in which each gcc of D is replaced with a single node.
3. For g,
below left give a satisfying assignment SATISFYING ASSIGNMENT
variable xi x2 x3 x4 x5 x6 x7 x8
$0 / 1$ value
either
or
below right explain why g is unsatisfiable.
g is unsatisfiable because ...

4.

Above right is a network: arc labels show capacities. Above left is a flow in this network: arc labels show flow volume. On the digraph below left, show the residual digraph for the above flow. You might have to add extra arcs. On the digraph below right, show a maximum s-t flow for the above network and a min s-t cut (by circling the node set that forms one part of the cut).

ROUGH WORK BELOW WILL NOT BE MARKED

first name	last name			
2019 cmput 304	3 hr	closed book	no devices	5 pages (8 marks/page)

5. Complete this definition: an algorithm is polynomial time if there is a nonnegative constant t such that, for every instance with \qquad n, the runtime is in O (\qquad).
6. For weights $[5,8,6,7]$, values $[6,9,8,10]$, and capacity 13 , give the missing entries of $\mathrm{K}[\mathrm{w}][\mathrm{j}]$ (rows 7, 1113) from this execution of the dynamic-programming-byweight (DPBW) knapsack algorithm.

\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
4	0	0	0	0	0
5	0	6	6	6	6
6	0	6	6	8	8
7	0	-	-	-	-
8	0	6	9	9	10
9	0	6	9	9	10
10	0	6	9	9	10
11	0	-	-	-	-
12	0	-	-	-	-
13	0	-	-	-	-

7. Consider an instance to the knapsack problem with m items, each with weight and value in the range $\left[2^{m-1}, 2^{m}-1\right]$, and with capacity $W=.75 \times m \times 2^{m}$. As a function of m, the number of bits needed to represent this instance is in Θ (\qquad). Explain briefly.
8. Let n be the number of bits from the previous question. DPBW knapsack runtime is in

first name		last nam		id\#	
2019 cmput304	3 hr	closed book	no devices	5 pages (8 marks/page)	page 4

9. Hamiltonian cycle problem (HCP) asks whether an input graph has a cycle $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ that includes all n nodes. Travelling sales problem (TSP) asks whether an input weighted graph has a hamiltonian cycle whose weight is at most a given integer k. TSPT is TSP where weights satisfy the triangle inequality: for each graph triangle $a, b, c, w(a, b) \leq w(a, c)+w(b, c)$. Assume HCP is NP-complete. Assume TSPT is in NP. Prove TSPT is in NP-complete. What is your overall plan in this proof? (circle a, b) a) Give a polytime answerpreserving transformation from HCP instances to TSPT instances. b) Give a polytime answer-preserving transformation from TSPT instances to HCP instances.

HERE IN AT MOST 60 WORDS describe your transformation

HERE IN AT MOST 60 WORDS explain why your transformation is polytime

HERE IN AT MOST 60 WORDS explain why your transformation is answer-preserving

```
# satisfiability formula f, boolean assignment a
```

 if a == ', or len(f)==0: return f, a \# unsatisfiable or satisfied
 \(\mathrm{t}=\mathrm{f} . \operatorname{index}(\min (\mathrm{f}, \mathrm{key}=\mathrm{len})) \quad\) \# clause with fewest literals
 if len \((f[t])==0\) : return \(f, \quad\) \# clause empty so unsatisfiable
 if \(\operatorname{len}(f[t])==1\) :
 \# unit clause so no choice
 newf, newa \(=\) fix_and_propagate (f[t] [0], f, a)
 return solve(newf, newa)
 literal \(=f[t][0] \quad \#\) 1st literal in shortest clause
 newf, newa = fix_and_propagate(literal, f, a)
 \# set literal TRUE
 if newa = '':
 \# this caused contradiction
 newf, newa = fix_and_propagate(-literal, f, a)
 \# set literal FALSE
 return solve(newf, newa)
 if len(newf)==0: return f, a if return, satisfied: if not, newa ok so far
 return solve(newf, newa)
 f is a list of clauses, each clause is a list of literals. Each character of string a is ' 0 ' or ' 1 ' or '?' (false, true, unassigned). f has n variables, at most $10 \times n$ clauses, each with at most 3 literals. Each fix_and_propagate() call takes $\Theta(n)$ time for each literal that it assigns. Each line 2 call takes $\Theta(n)$ time. len() takes time proportional to the length. Below, using big O notation, give a recurrence relation for $r(k)$, the worstcase runtime for solve (f, a) when a has exactly k unassigned literals.

Case A. $r(k)=O(k \times n) \quad$ if solve(f, a) makes no recursive call to solve()
because in the worst case fix_and_propagate() on line (fill in blank) \qquad assigns enough literals to satisfy f and execution returns on line \qquad .

Case B. $r(k)=O(\ldots)+r(\ldots \quad$ if solve(f, a) calls solve() on line 6 after exactly j literals were assigned on line 5.

Case C. $r(k)=O(\ldots)+r(k-j) \quad$ if solve (f, a) calls solve() on line 11 after at most n literals were assigned on line 8 and exactly j literals were assigned on line 10.

Case D. $r(k)=O(\ldots)+r(\ldots) \quad$ if solve(f, a) calls solve() on line 13 after exactly j literals were assigned on line 8.

For each of B,C,D, the size of the parameter to r on the right-hand-side of the equation (circle one) can be bigger than k can be as big as k is less than k. This algorithm (circle one) is is not polytime. Justify IN AT MOST 30 WORDS. Hint: this algorithm might not be correct.

