Introduction to Bayesian Belief Nets

Russ Greiner
Dep’t of Computing Science
Alberta Ingenuity Centre for Machine Learning
University of Alberta

http://www.cs.ualberta.ca/~greiner/bn.html
The future of software may lie in the obscure theories of an 18th century cleric named Thomas Bayes.
Motivation

Gates says [LATimes, 28/Oct/96]:

Microsoft’s competitive advantages is its expertise in “Bayesian networks”

Current Products

- Microsoft Pregnancy and Child Care (MSN)
- Answer Wizard (Office, …)
- Print Troubleshooter
 - Excel Workbook Troubleshooter
 - Office 95 Setup Media Troubleshooter
 - Windows NT 4.0 Video Troubleshooter
 - Word Mail Merge Troubleshooter
Motivation (II)

US Army: **SAIP** (Battalion Detection from SAR, IR… GulfWar)

NASA: **Vista** (DSS for Space Shuttle)

GE: **Gems** (real-time monitor for utility generators)

Intel: (infer possible processing problems from end-of-line tests on semiconductor chips)

KIC:

- **Medical:** sleep disorders, pathology, trauma care, hand and wrist evaluations, dermatology, home-based health evaluations
- **DSS for capital equipment:** locomotives, gas-turbine engines, office equipment
Motivation (III)

- Lymph-node pathology diagnosis
- Manufacturing control
- Software diagnosis
- Information retrieval

Types of tasks
- Classification/Regression
- Sensor Fusion
- Prediction/Forecasting
Outline

- Existing uses of Belief Nets (BNs)
- What is a BN?
 - Specific Examples of BNs
 - Contrast with Rules, Neural Nets, ...
 - Possible applications of BNs
- Challenges
 - How to reason efficiently
 - How to learn BNs
Symptoms
Chief complaint
History, …

Signs
Physical Exam
Test results, …

Plan
Treatment, …

Diagnosis
Blah blah ouch yak ouch blah ouch blah blah ouch blah
Objectives: Decision Support System

- Determine
 - which *tests* to perform
 - which *repair* to suggest
 based on *costs*, *sensitivity/specificity*, ...

- Use all sources of information
 - *symbolic* (discrete observations, history, …)
 - *signal* (from sensors)

- Handle *partial* information

- *Adapt* to track fault distribution
Underlying Task

- **Situation**: Given observations \(\{O_1=\nu_1, \ldots, O_k=\nu_k\} \) (symptoms, history, test results, …) what is best DIAGNOSIS \(D_{x_i} \) for patient?

 - **Approach1**: Use set of \(\text{obs}_1 \& \ldots \& \text{obs}_m \rightarrow D_{x_i} \) rules

 but… *Need rule for each situation*

 - for each diagnosis \(D_{x_r} \)
 - for each set of possible values \(\nu_j \) for \(O_j \)
 - for each subset of obs. \(\{O_{x1}, O_{x2}, \ldots\} \subset \{O_j\} \)

 Can’t use

If Temp>100 & BP = High & Cough = Yes → DiseaseX
if only know Temp and BP

- *Seldom Completely Certain*
Underlying Task

- **Situation:** Given observations \(\{O_1 = v_1, \ldots, O_k = v_k\} \) (symptoms, history, test results, …)
 what is best \(\text{DIAGNOSIS } D_{x_i} \) for patient?

- **Approach 2:** Compute Probabilities of \(D_{x_i} \) given observations \(\{ \text{obs}_j \} \)

 \[
 P(D_x = u \mid O_1 = v_1, \ldots, O_k = v_k)
 \]

- **Challenge:** How to express Probabilities?
How to deal with Probabilities

- **Sufficient: “atomic events”:**

 \[P(D_x = u, O_1 = v_1, ..., O_k = v_k, ..., O_N = v_N) \]

 for all \(2^{1+N} \) values \(u \in \{T, F\}, \ v_j \in \{T, F\} \)

 - \(P(D_x = T, O_1 = T, O_2 = T, ..., O_N = T) = 0.03 \)
 - \(P(D_x = T, O_1 = T, O_2 = T, ..., O_N = F) = 0.4 \)
 - \(\Rightarrow \)
 - \(P(D_x = T, O_1 = F, O_2 = F, ..., O_N = T) = 0 \)
 -
 - \(P(D_x = F, O_1 = F, O_2 = F, ..., O_N = F) = 0.01 \)

- **Then: Marginalize.**

 \[P(D_x = u, O_1 = v_1, ... O_7 = v_7) = \sum_{v_8, ..., v_N} P(D_x = u, O_1 = v_1, ... O_7 = v_7, ... O_N = v_N) \]

- **Conditionalize:**

 \[P(D_x = u \mid O_1 = v_1, ... O_7 = v_7) = \frac{P(D_x = u, O_1 = v_1, ... O_7 = v_7)}{P(O_1 = v_1, ... O_7 = v_7)} \]

 - But… even if binary \(D_x \), 20 binary obs.’s. \(\Rightarrow \) >2,097,000 numbers!
Problems with “Atomic Events”

- Representation *is not intuitive*
 - Should make “connections” explicit
 - Use “local information”

 \[P(\text{Jaundice} \mid \text{Hepatitis}), \ P(\text{LightDim} \mid \text{BadBattery}), \ldots \]

- Too many numbers – \(O(2^N) \)
 - Hard to store
 - Hard to use
 - [Must add \(2^r \) values to marginalize \(r \) variables]
 - Hard to learn
 - [Takes \(O(2^N) \) samples to learn \(2^N \) parameters]

 \[\Rightarrow \text{Include only necessary “connections”} \]

\[\Rightarrow \text{Belief Nets} \]
? Hepatitis?

Jaunticed

? Hepatitis, not Jaunticed but +BloodTest

BloodTest
Encoding Causal Links

- **Simple Belief Net:**

 - **Table:**

 | h | P(B=1 | H=h) | P(B=0 | H=h) |
 |---|-----------|-----------|
 | 1 | 0.95 | 0.05 |
 | 0 | 0.03 | 0.97 |

- **Node ~ Variable**
- **Link ~ “Causal dependency”**
- **“CPTable” ~ P(child | parents)**

- **Table:**

 | h | b | P(J=1|h,b) | P(J=0|h,b) |
 |---|---|------------|------------|
 | 1 | 1 | 0.8 | 0.2 |
 | 1 | 0 | 0.8 | 0.2 |
 | 0 | 1 | 0.3 | 0.7 |
 | 0 | 0 | 0.3 | 0.7 |
Encoding Causal Links

- $P(J \mid H, B=0) = P(J \mid H, B=1) \ \forall J, H$
 - $\Rightarrow P(J \mid H, B) = P(J \mid H)$
- J is **INDEPENDENT** of B, once we know H
- Don’t need $B \rightarrow J$ arc!
Encoding Causal Links

- $P(J \mid H, B=0) = P(J \mid H, B=1)$ $\forall J, H$
 $\Rightarrow P(J \mid H, B) = P(J \mid H)$

- J is INDEPENDENT of B, once we know H

- Don’t need $B \rightarrow J$ arc!
Encoding Causal Links

- \(P(J \mid H, B=0) = P(J \mid H, B=1) \quad \forall J, H \)
 \[\implies P(J \mid H, B) = P(J \mid H) \]
- \(J \) is **INDEPENDENT** of \(B \), once we know \(H \)
- Don’t need \(B \rightarrow J \) arc!

<table>
<thead>
<tr>
<th>(h)</th>
<th>(P(B=1 \mid H=h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(h)</th>
<th>(P(J=1 \mid h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P(H=1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>
Sufficient Belief Net

\[P(B=1 \mid H=h) \]

<table>
<thead>
<tr>
<th>h</th>
<th>P(B=1 \mid H=h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\[P(H=1) \]

<table>
<thead>
<tr>
<th>h</th>
<th>P(H=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\[P(J=1 \mid h) \]

<table>
<thead>
<tr>
<th>h</th>
<th>P(J=1 \mid h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- **Requires:**
 - \(P(H=1) \) known
 - \(P(J=1 \mid H=1) \) known
 - \(P(B=1 \mid H=1) \) known

(Only 5 parameters, not 7)

\[P(H=1 \mid B=1, J=0) = \frac{1}{\alpha} \quad P(H=1) \quad P(B=1 \mid H=1) \quad P(J=0 \mid B=1, H=1) \]

Hence:

\[P(H=1 \mid B=1, J=0) = \frac{1}{\alpha} \quad P(H=1) \quad P(B=1 \mid H=1) \quad P(J=0 \mid B=1, H=1) \]
“Factoring”

- **B does depend on J:**

 If J=1, then likely that H=1 \(\Rightarrow \) B = 1

- **but... ONLY THROUGH H:**

 - If know H=1, then likely that B=1
 - ... doesn’t matter whether J=1 or J=0!

 \(\Rightarrow \) \(P(J=0 \mid B=1, H=1) = P(J=0 \mid H=1) \)

N.b., **B and J ARE correlated a priori** \(P(J \mid B) \neq P(J) \)

GIVEN H, they become uncorrelated \(P(J \mid B, H) = P(J \mid H) \)
Factored Distribution

- **Symptoms independent, given Disease**

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>J</td>
<td>Jaundice</td>
</tr>
<tr>
<td>B</td>
<td>(positive) Blood test</td>
</tr>
</tbody>
</table>

 \[
 P(B | J) \neq P(B) \quad \text{but} \quad P(B | J, H) = P(B | H)
 \]

- **ReadingAbility and ShoeSize are dependent,**

 \[
 P(\text{ReadAbility} | \text{ShoeSize}) \neq P(\text{ReadAbility})
 \]

 but become independent, given Age

 \[
 P(\text{ReadAbility} | \text{ShoeSize}, \text{Age}) = P(\text{ReadAbility} | \text{Age})
 \]
"Naïve Bayes"

Classification Task:
Given \(\{ O_1 = v_1, \ldots, O_n = v_n \} \)
Find \(h_i \) that maximizes \((H = h_i \mid O_1 = v_1, \ldots, O_n = v_n) \)

\[
P(H = h_i) \cdot \prod_{j} P(O_j = v_j \mid H = h_i)
\]

Given

- \(P(O_j = v_j \mid H = h_i) \)
- \(\text{Independent: } P(O_j \mid H, O_k, \ldots) = P(O_j \mid H) \)

\[
P(H = h_i \mid O_1 = v_1, \ldots, O_n = v_n) = \frac{1}{\alpha} P(H = h_i) \prod_{j} P(O_j = v_j \mid H = h_i)
\]

Find \(\text{argmax} \ \{ h_i \} \)
Naïve Bayes (con’t)

\[P(H = h_i \mid O_1 = v_1, \ldots, O_n = v_n) = \frac{1}{\alpha} P(H = h_i) \prod_j P(O_j = v_j \mid H = h_i) \]

- Normalizing term
 \[\alpha = P(O_1 = v_1, \ldots, O_n = v_n) = \sum_i P(H = h_i) \prod_j P(O_j = v_j \mid H = h_i) \]
 (No need to compute, as same for all \(h_i \))

- Easy to use for Classification
- Can use even if some \(v_j \)'s not specified

- If \(k \) \(Dx \)'s and \(n \) \(O_i \)'s,
 requires only \(k \) priors, \(n \times k \) pairwise-conditionals
 (Not \(2^{n+k} \ldots \) relatively easy to learn)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1+2n</th>
<th>(2^{n+1} - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21</td>
<td>2,047</td>
</tr>
<tr>
<td>30</td>
<td>61</td>
<td>2,147,438,647</td>
</tr>
</tbody>
</table>
Bigger Networks

Intuition: Show \textit{CAUSAL} connections:

\textbf{GeneticPH CAUSES Hepatitis}; \quad \textbf{Hepatitis CAUSES Jaundice}

If \textbf{GeneticPH}, then expect \textbf{Jaundice}:

GeneticPH \Rightarrow Hepatitis \Rightarrow Jaundice

But only via \textbf{Hepatitis}:

GeneticPH and not Hepatitis \Rightarrow Jaundice

\[
P(J \mid G) \neq P(J) \quad \text{but} \quad P(J \mid G,H) = P(J \mid H)
\]
Belief Nets

- **DAG structure**
 - Each node \equiv Variable ν
 - ν depends (only) on its parents

+ conditional prob: $P(\nu_i \mid \text{parent}_i = \langle 0, 1, \ldots \rangle)$

- ν is INDEPENDENT of non-descendants, given assignments to its parents

Given $H = 1$,
- D has no influence on J
- J has no influence on B
- etc.
Less Trivial Situations

- *N.b.*, obs₁ is *not* always independent of obs₂ given H

- *Eg.*, FamilyHistoryDepression *‘causes’* MotherSuicide and Depression

 MotherSuicide *causes* Depression *(w/ or w/o F.H.Depression)*

 $P(D \mid MS, FHD) \neq P(D \mid FHD)$!

 Can be done using Belief Network,
 but need to specify:

 $P(FHD)$

 $P(MS \mid FHD)$

 $P(D \mid MS, FHD)$

 | f | P(MS=1 | FHD=f) |
 |---|----------------|
 | 1 | 0.10 |
 | 0 | 0.03 |

 | f | m | P(D=1 | FHD=f, MS=m) |
 |---|---|----------------|
 | 1 | 1 | 0.97 |
 | 1 | 0 | 0.90 |
 | 0 | 1 | 0.08 |
 | 0 | 0 | 0.04 |
A Logical Alarm Reduction Mechanism
• 8 diagnoses, 16 findings, …
Troup Detection

Diagram illustrating the relationship between various factors in troup detection, including terrain, unit type, vehicle classification, formation, sub-units, cluster, and vehicle detections.
ARCO1: Forecasting Oil Prices

Diagram showing the relationship between US Tax Policy, Price, OPEC Politics, Demand, Supply, World Growth, and Historical Values.
ARCO1: Forecasting Oil Prices
Forecasting Potato Production
Warning System
Extensions

- Find best values (posterior distr.) for SEVERAL (> 1) “output” variables
- Partial specification of “input” values
 - only subset of variables
 - only “distribution” of each input variable
- General Variables
 - Discrete, but domain > 2
 - Continuous (Gaussian: \(x = \sum_i b_i y_i \) for parents \(\{Y\} \))
- Decision Theory \(\Rightarrow \) Decision Nets (Influence Diagrams)
 Making Decisions, not just assigning prob’s
- Storing \(P(v | p_1, p_2, ..., p_k) \)
 General “CP Tables” 0(2^k)
 Noisy-Or, Noisy-And, Noisy-Max
 “Decision Trees”
Outline

- Existing **uses** of Belief Nets (BNs)
- What is a BN?
- Specific **Examples** of BNs
- **Contrast** with Rules, Neural Nets, …
- Possible **applications** of BNs
- **Challenges**
 - How to reason efficiently
 - How to *learn* BNs
Belief Nets vs Rules

- Both have “Locality”
 Specific clusters (rules / connected nodes)

- Often same nodes (rep’ning Propositions) but

 BN: Cause \Rightarrow Effect
 “Hep \Rightarrow Jaundice” $P(J | H)$

 Rule: Effect \Rightarrow Cause
 “Jaundice \Rightarrow Hep”

 WHY?: Easier for people to reason CAUSALLY
 even if use is DIAGNOSTIC

- BN provide OPTIMAL way to deal with
 + Uncertainty
 + Vagueness (var not given, or only dist)
 + Error

 ...Signals meeting Symbols ...

- BN permits different “direction”’s of inference
Belief Nets vs Neural Nets

- Both have "graph structure" but

<table>
<thead>
<tr>
<th>BN:</th>
<th>Nodes have SEMANTICs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combination Rules: Sound Probability</td>
</tr>
<tr>
<td>NN:</td>
<td>Nodes: arbitrary</td>
</tr>
<tr>
<td></td>
<td>Combination Rules: Arbitrary</td>
</tr>
</tbody>
</table>

- So harder to
 - Initialize NN
 - Explain NN
 (But perhaps easier to learn NN from examples only?)

- BNs can deal with
 - Partial Information
 - Different "direction"s of inference
Belief Nets vs Markov Nets

- Each uses “graph structure”
 to FACTOR a distribution
 …explicitly specify dependencies, implicitly independencies...

- but subtle differences...
 - BNs capture “causality”, “hierarchies”
 - MNs capture “temporality”

Technical: BNs use DIRECTED arcs
 ⇒ allow “induced dependencies”

 \[I(A, \{\}, B) \] “A independent of B, given {}”
 \[\neg I(A, C, B) \] “A dependent on B, given C”

MNs use UNDIRECTED arcs
 ⇒ allow other independencies

 \[I(A, BC, D) \] A independent of D, given B, C
 \[I(B, AD, C) \] B independent of C, given A, D
Uses of Belief Nets #1

Medical Diagnosis: “Assist/Critique” MD
- identify diseases not ruled-out
- specify additional tests to perform
- suggest treatments appropriate/cost-effective
- react to MD’s proposed treatment

Decision Support: Find/repair faults in complex machines
[Device, or Manufacturing Plant, or …]
… based on sensors, recorded info, history,…

Preventative Maintenance:
Anticipate problems in complex machines
[Device, or Manufacturing Plant, or …]
…based on sensors, statistics, recorded info, device history,…
Uses (con’t)

- **Logistics Support**: Stock warehouses appropriately ... based on (estimated) freq. of needs, costs,
- **Diagnose Software**: Find most probable bugs, given program behavior, core dump, source code, ...
- **Part Inspection/Classification**: ... based on multiple sensors, background, model of production,...
- **Information Retrieval**: Combine information from various sources, based on info from various “agents”,...

General: Partial Info, Sensor fusion
- Classification
- Prediction
- Interpretation
- ...

40
For given BN:

Given \(O_1 = v_1, \ldots, O_n = v_n \)

Compute \(P(H \mid O_1 = v_1, \ldots, O_n = v_n) \)

+ If BN is “poly tree”, \(\exists \) efficient alg.

- If BN is gen’l DAG (>1 path from \(X \) to \(Y \))
 - NP-hard in theory
 - slow in practice

Tricks: Get *approximate* answer (quickly)

+ Use abstraction of BN
+ Use “abstraction” of query (range)
Why Reasoning is Hard

- BN reasoning may look easy: Just “propagate” information from node to node

- Challenge: What is $P(C=t)$?

 $A = Z = \neg B$ \quad $P(A=t) = P(B=f) = \frac{1}{2}$

 So...? $P(C=t) = P(A=t, B=t)$

 $$= P(A=t) \times P(B=t) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

- Wrong: $P(C=t) = 0$!

Need to maintain dependencies! $P(A=t, B=t) = P(A=t) \times P(B=t|A=t)$

Table: Conditional Probabilities

| A | B | $P(C=t|a,b)$ |
|-----|-----|---------------|
| t | t | 1.0 |
| t | f | 0.0 |
| f | t | 0.0 |
| f | f | 0.0 |

Diagram:

- Nodes: A, B, C, Z
- Edges: $A \rightarrow C$, $B \rightarrow C$, $Z \rightarrow A$, $Z \rightarrow B$
- Probabilities:
 - $P(Z=t) = 0.5$
 - $P(A=t|Z=t) = 1.0$, $P(A=t|Z=f) = 0.0$
 - $P(B=t|Z=t) = 0.0$, $P(B=t|Z=f) = 1.0$
 - $P(C=t|A=t, B=t) = \frac{1}{4}$
2a: Obtaining Accurate BN

BN encodes distribution over \(n \) variables

\[
\text{Not } O(2^n) \text{ values, but “only” } \sum_i 2^{k_i} \\
(\text{Node } n_i \text{ binary, with } k_i \text{ parents})
\]

Still lots of values! …structure ..

⇒ **Qualitative Information**

Structure: “What depends on what?”

- Easy for people (background knowledge)
- But NP-hard to learn from samples...

Knowledge acquisition: from human experts

⇒ **Quantitative Information**

Actual CP-tables

- Easy to learn, given lots of examples.
- But people have hard time…

Simple learning algorithm
Notes on Learning

- **Mixed Sources**: Person provides structure; Algorithm fills-in numbers.

- **Just Learning Algorithm**: \exists algorithms that learn $\left\{ \text{structure values} \right\}$ from sample

- **Just Human Expert**: People produce CP-table, as well as structure
 Relatively few values really required
 Esp. if NoisyOr, NoisyAnd, NaiveBayes, ...

 Actual values not *that* important
 …Sensitivity studies
The world changes. Information in BN^* may be
- perfect at time t
- sub-optimal at time $t + 20$
- worthless at time $t + 200$

Need to *MAINTAIN* a BN over time using *on-going* human consultant

Adaptive BN
- Dirichlet distribution (variables)
- Priors over BNs
My Results Related to Belief Nets

- Quantifying Uncertainty in BN Response
 - $\Pr_{\Theta}(C=\text{true} \mid D=\text{false}) = 0.3\pm 0.05$
 - Uses: Good Decision, Bad Outcome Bias$^2+$Variance; Mixture using Variance

- Learning Structure – Generatively
 - BDe, 2-foldCV work well (not MDL)

- Learning Structure – Discriminatively
 - Bias$^2+$Variance works well (not MDL)

- Learning Parameters – Discriminately
 - NaïveBayes : Logistic Regression :: Belief Nets : ELR
Conclusions

- **Belief Nets are PROVEN TECHNOLOGY**
 - Medical Diagnosis
 - DSS for complex machines
 - Forecasting, Modeling, InfoRetrieval…

- **Provide effective way to**
 - Represent complicated, inter-related events
 - Reason about such situations
 - Diagnosis, Explanation, ValueOfInfo
 - Explain conclusions
 - Mix Symbolic and Numeric observations

- **Challenges**
 - Efficient ways to use BNs
 - How to create accurate/effective BNs
 - How to maintain BNs
 - Reason about time…