Heuristic Search

- Best-First
- A*
- Heuristic Functions

Some material from: D Lin, J You, JC Latombe
Search Overview

- Introduction to Search
- Blind Search Techniques
- Heuristic Search Techniques
 - Best-First
 - A*
 - Heuristic Functions
 - Stochastic Algorithms
 - Game Playing search
 - Constraint Satisfaction Problems
Heuristic Search

- “Blind” methods only know Goal / NonGoal
- Often ∃ other problem-specific knowledge that can guide search:
 - **Heuristic fn** $h(n): \text{Nodes} \rightarrow \mathbb{R}$
 - estimate of distance from n to a goal
 - Eg: straight line on map, or “Manhattan distance”, or …
 - Use: Given list of nodes to expand, choose node n with min'l $h(.)$
Heuristic Function

- $h(n)$ estimates cost of cheapest path from node n to goal node
- Example: 8-puzzle

$$h_1(n) = \text{number of misplaced tiles} = 6$$
Heuristic Function

- $h(n)$ estimates cost of cheapest path from node n to goal node.
- Example: 8-puzzle

$h_1(n) = $ number of misplaced tiles

 \[
 \text{h}_1(n) = 6
 \]

$h_2(n) = $ sum of the distances of every tile to its goal position

 \[
 \text{h}_2(n) = 3 + 1 + 3 + 0 + 2 + 1 + 0 + 3 = 13
 \]
Greedy Best-First Search

BestF_Search(start, operations, is_goal): path
L := makeList(start)
loop
 \[n := \arg \min_{n_i \in L} h(n_i) \]
 ;; "most promising" node in L according to h(.)
 if [is_goal(n)]
 return(n)
 S := successors(n, operators)
 L := insert(S, L)
until L is empty
return(failure)

Idea: choose frontier node with smallest h-value
ie, "closest to goal"
Can also return "path from start to \(n \)"
... by identifying each node with path
Robot Navigation
Robot Navigation

Edmonton

\[h(n) = \text{Manhattan distance to the goal} \]

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Heuristic Function – Bulgaria

\(h_{\text{SLD}}(n) \) is straight-line distance from \(n \) to goal (Bucharest)
Best First
Best First
BestFirst is SubOptimal

- h_{SLD} finds path:

 \[\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{Fagaras} \rightarrow \text{Bucharest} \]

 \[\text{(Cost} = 140 + 99 + 211 = 450) \]

- Not optimal!

 \[\text{C}(\text{Arad} \rightarrow \text{Sibiu} \rightarrow \text{Rimnicu} \rightarrow \text{Pitesti} \rightarrow \text{Bucharest}) \]

 \[= 140 + 80 + 97 + 101 = 418 \]

 \[< h_{\text{SLD}}'s \text{ solution!} \]

- BestFirst is greedy:

 takes BIGGEST step each time...
BestFirst can Loop

- Consider: **Iasi → Fagaras**
 - h_{SLD} suggests: **Iasi → Neamt**
- Worse: Unless search alg detects repeated states, BestFirst will oscillate:
 - **Iasi → Neamț → Iasi → Neamț → ...**
- Loops are a real problem...
Properties of Greedy Best-First Search

- If state space is finite and we avoid repeated states, THEN Best-First search is complete, but in general is not optimal.
- If state space is finite and we do not avoid repeated states, THEN Best-First search is not complete.
- If the state space is infinite, THEN Best-First search is not complete.
Analysis of Greedy BestFirst

- **Complete?** No
 ...can go down ∞-path (oscillate)

- **Optimal?** No
 ... may not find shortest path

- **Time:** $O(b^m)$
- **Space:** $O(b^m)$
 (if $h(.) \equiv 0$, could examine entire space)

- Worst of both worlds
 - \approxDFS: too greedy!
 - \approxBFS: too much space!
A* Search

- Find cheapest path, quickly
- Consider both:
 - Path from start to n:
 - $g(n) = \text{cost of path found to } n$
 - Path from n to goal (est.):
 - $h(n) = \text{estimate of cost from } n \text{ to a goal}$
 - $f(n) = g(n) + h(n)$
- est of cost of path from start to goal, via n
A* Search, con’t

- A* selects node with min’l $f(n)$
 - ...ie, node with lowest estimated distance from start to goal, constrained to go via that node

- ... mix of \{ lowest-cost-first, best-first \} searches!
Example of A*

Note: Finds Optimal Path!

- A* expands
 - Rimnicu \((f = (140+80)+193 = 413)\) over
 - Faragas \((f = (140+99)+178 = 417)\)
- Why?
 - Fagaras is closer to Bucharest (than Rimnicu) but
 path taken to get to Fagaras is not as efficient at getting close to Bucharest ...
 as Rimnicu
$f(n) = g(n) + h(n)$, with $h(n)$ = Manhattan distance to goal

<table>
<thead>
<tr>
<th></th>
<th>3+10</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>8+3</td>
<td>7+4</td>
<td>6+3</td>
<td>5+6</td>
<td>4+7</td>
</tr>
<tr>
<td>7+2</td>
<td>5+6</td>
<td>4+7</td>
<td>3+8</td>
<td></td>
</tr>
<tr>
<td>6+1</td>
<td></td>
<td></td>
<td>2+9</td>
<td>1+10</td>
</tr>
<tr>
<td>7+0</td>
<td>6+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+1</td>
<td>7+2</td>
<td>6+3</td>
<td>5+4</td>
<td>4+5</td>
</tr>
</tbody>
</table>
How A* Searches

- Contour-lines of “equal-f values”
- A* expands nodes with increasing $f(n)$ values
- If use $h(.) = 0$ (UniformCost) get Circles
 \Rightarrow more nodes expanded (in general)!
Admissible heuristic

- $h^*(n) = \text{cost of optimal path from } n \text{ to a goal node}$

- Heuristic $h(n)$ is admissible if:
 \[0 \leq h(n) \leq h^*(n) \]

- Admissible heuristic is always optimistic

- True for
 - Straight Line [map traversal]
 - Manhattan distances [8-puzzle]
 - Number of attacking queens [n-queens] [place all queens, then move]

$\Rightarrow f(.) \text{ is under-estimate}$
Heuristics for 8-Puzzle

- $h_1(n) = \text{number of misplaced tiles}$... $= 6$
- $h_2(n) = \text{sum of distances of each tile to goal posn}$... $= 13$
- $h_3(n) = h_1(n) + 3 \times h_2(n)$... $= 45$
- $h_4(n) = 0$... $= 0$
- $h_5(n) = \min\{ h_1(n), h_2(n) \}$... $= 6$
f(n) is monotonic

- \(f(n) \leq f(n') \), as from-S-to-E-via-n is less constrained than from-S-to-E-via-n-n'

\[g(n) \leq h(n) \leq h^*(n) \]
Monotonic $f(.)$

- $f(.)$ is "monotonic" $\equiv f(\text{Successor}(n)) \geq f(n)$

- Always true if $|h(n) - h(m)| \leq d(n,m)$
 ... $d(n,m)$ is distance from n to m

- If true: first path that A* finds to node, is always shortest

- If $f(.)$ not monotonic, can modify to be:

 Eg, $n' \in \text{Successor}(n)$
 $f(n) = g(n)+h(n) = 3+4 = 7$
 $f(n') = g(n')+h(n') = 4+2 = 6$

 But... any path through n' is also path through n,
 so $f(n)$ must be ≥ 7
 \Rightarrow should reset $f(n') = 7$

 \Rightarrow use $f(n') = \max\{f(n), g(n')+h(n')\}$

 Called "path-max equation”
 ... ignores misleading numbers in heuristic
A* is OPTIMAL

Thrm: A* always returns optimal solution if
- ∃ solution
- h(n) is under-estimate

PROOF:
Let G be optimal goal, with \(f(G) = g(G) = f \)
G_2 be suboptimal goal, with \(f(G_2) = g(G_2) > f \)
If A* returns G_2 ⇒
G_2 is chosen over \(n \), where \(n \) is node on optimal path to G
This only happens if \(f(G_2) \leq f(n) \)
As \(f \) is monotonically increasing along every path,
⇒ \(f = f(G) \geq f(n) \)
Hence, \(f \geq f(G_2) \) ... ie, if \(g(G) \geq g(G_2) \)
... contradicting claim that G_2 is suboptimal! []
Properties of A*

A* is Optimally Efficient
Given the information in \(h(.) \), no other optimal search method can expand fewer nodes. Non-trivial and quite remarkable!

A* is Complete
... unless there are \(\infty \) nodes w/ \(f(n) < f^* \)
- **A* is Complete**
 if branching factor is finite & arc costs bounded above zero
 \((\exists \varepsilon > 0 \text{ s.t. } c(a_i) \geq \varepsilon) \)

Time/ Space Complexity:
Still exponential as \(\approx \) breadth-first.
... unless \(|h(n) - h(n^*)| \leq O(\log(h(n^*)) \)
\(h(n^*) = \) true cost of getting from \(n \) to goal
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles
Robot navigation

\[f(n) = g(n) + h(n), \text{ with } h(n) = \text{ straight-line distance from } n \text{ to goal} \]

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = \(\sqrt{2} \)
A* Topics

- Which heuristic?
- Avoiding Loops
- Iterative Deepening A*
Heuristics for 8-Puzzle

<table>
<thead>
<tr>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

\[n \]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{goal} \]

Admissible??

- \[h_1(n) = \text{number of misplaced tiles} \ldots = 6 \]
- \[h_2(n) = \text{sum of distances of each tile to goal posn} \ldots = 13 \]
- \[h_3(n) = h_1(n) + 3 \times h_2(n) \ldots = 45 \]
- \[h_4(n) = 0 \ldots = 0 \]

Many admissible heuristics ... which to use??
Importance of $h(.)$

- $A^*(h_i)$ expands all nodes with $f(n) = g(n) + h_i(n) < f^*$
 ... ie, with $h_i(n) < f^* - g(n)$

- $h_1(n) < h_2(n) \Rightarrow$
 If $A^*(h_2)$ expands n, then $A^*(h_1)$ expands n!
 ... but not vice versa

- $A^*(h_2)$ might expand FEWER nodes

- So LARGER $h_i()$ means fewer n's expanded!
Importance of $h(.)$

- LARGER $h_i()$ means fewer n's expanded!

- As $h_C \leq h_M \leq h^*$, prefer h_M!

- Gen'l:
 Want largest $h()$ that is under-estimate
Effect of Different Heuristic Functions

"Effective Branching Factor" \(b \) is solution to

\[
N = 1 + (b^*) + (b^*)^2 + (b^*)^3 + \ldots + (b^*)^d
\]

where \(N \) is # of nodes searched

\(d \) is solution depth

<table>
<thead>
<tr>
<th>(d)</th>
<th>IDS</th>
<th>(A^*(h_C))</th>
<th>(A^*(h_M))</th>
<th>IDS</th>
<th>(A^*(h_C))</th>
<th>(A^*(h_M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>
About Heuristics

- Heuristics are intended to orient the search along promising paths.
- Time spent evaluating heuristic function must be recovered by a better search.
 - “Perfect heuristic function” would mean NO search!
- Deciding which node to expand \equiv “meta-reasoning”
- Heuristics...
 - may not always look like numbers
 - may involve large amount of knowledge
Inventing Heuristics

- Solve problem, then compute backwards...
- If \(\{h_1, \ldots, h_k\} \) all underestimates, use \(h_{\text{max}}(n) = \max \{ h_i(n) \} \)
 (Still an under-estimate, but larger ...)
- **Relaxation:**
 Consider SIMPLER version of problem. As heuristic, use
 - "exact answer to approx problem"
Inventing Heuristics

Original: Can move tile from sq A to sq B if
... A is adjacent to B and B is blank.

Relaxed version #1:
- Ie, can TELEPORT tile to blank
 ➞ # of misplaced tiles h_C

Relaxed version #2:
- Ie, can walk over non-blank tile
 ➞ Manhattan distance h_M
Other Tricks

- Patterns Databases
- Learning from part experiences
Avoiding Repeated States in A*

If the heuristic $h(.)$ is monotonic, then:

- Let $CLOSED$ be the list of states associated with expanded nodes.
- When a new node n is generated:
 - If its state is in $CLOSED$, then discard n.
 - If it has the same state as another node in the fringe, then discard the node with the largest $f(.)$.
Complexity of Consistent A*:

- $s = |S|$
 - size of the state space

- $r = |A|$
 - max number of states that can be reached by applying any operator, from any state

Assume test if state $s \in \text{CLOSED}$ is $O(1)$

\Rightarrow Time complexity of A*: $O(sr \log s)$
Iterative Deepening A* (IDA*)

- Use $f(n) = g(n) + h(n)$ with admissible, consistent $h(.)$
- Each iteration is depth-first with cutoff on the value of $f(n)$ of expanded nodes

AIXploratorium
http://www.cs.ualberta.ca/~aixplore
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles

Cutoff=4
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles

Cutoff=4
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) \) = number of misplaced tiles

Cutoff=4
8-Puzzle

\[f(n) = g(n) + h(n) \]
with \(h(n) = \) number of misplaced tiles

No more nodes to expand with Cutoff = 4
Now consider Cutoff = 5
8-Puzzle

\[f(n) = g(n) + h(n) \]
with \(h(n) = \) number of misplaced tiles
8-Puzzle

\[f(n) = g(n) + h(n) \]
with \(h(n) = \) number of misplaced tiles

Cutoff = 5
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) \) = number of misplaced tiles

\[\text{Cutoff=5} \]
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles
8-Puzzle

\[f(n) = g(n) + h(n) \]
with \(h(n) = \) number of misplaced tiles

Cutoff = 5
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles

Cutoff=5
8-Puzzle

\[f(n) = g(n) + h(n) \]

with \(h(n) = \) number of misplaced tiles

Cutoff = 5
Summary

- Heuristic function
- Greedy Best-first search
- Admissible heuristic
- A* is complete and optimal
 - Optimally efficient!
- Consistent heuristic and repeated states
- Inventing Heuristics
- IDA*