Blind Search

Some material from: D Lin, J You, JC Latombe
Search Overview

- Introduction to Search
- Blind Search Techniques
 aka “Uninformed Search” (Goal vs NonGoal)
 - Breadth-First (Uniform Cost)
 - Depth-First
 - “Iterative Deepening"
- Bi-Directional
- Heuristic Search Techniques
- Stochastic Algorithms
- Game Playing search
- Constraint Satisfaction Problems
Generic Search Algorithm

\[
\text{Search}_{\text{insert}}(\text{start}, \text{operations}, \text{isGoal}) : \text{path} \\
L = \text{make-queue}(\text{start}) \\
\text{loop} \\
\quad n := \text{pop}(L) \\
\quad \text{if } [\text{isGoal}(n)] \\
\quad \quad \text{return}(n) \\
\quad S := \text{successors}(n, \text{operators}) \\
\quad L := \text{insert}(S, L) \\
\text{until } L \text{ is empty} \\
\text{return}(\text{failure})
\]

insert could be queue, stack, ... defines strategy!
Blind Search

- Blind Search
 - Depth-first search
 - Breadth-first search
 - Iterative deepening
 - ...

- Not “guided” by goal
- No matter where the goal is, these algorithms will do the same thing.
Performance Measures of Search Algorithms

- Completeness
 Does algorithm always find a sol’n (if \(\exists \))?

- Optimality
 Does it always find least cost sol’n?

- Time complexity
 How long does it take to find sol’n?

- Space complexity
 How much memory is required to find a sol’n?
Parameters

To measure Time and Space complexity:

- **b: maximum branching factor of the search tree**
 - Max number of operations at any state

- **d: depth** of the least-cost solution
 - Depth of shallowest goal node in search tree

- **m: maximum depth of the state space**
 (may be ∞)
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue,
 ... new successors go at end
Breadth-First Search
Properties of Breadth-First search

- **Complete?** Yes (if b is finite)
- **Optimal?** Yes (if cost = 1 per step)
- **Time?** $O(b^d)$
 - $1 + b + b^2 + \ldots + b^{d/2} = O(b^d)$
- **Space?** $O(b^d)$
 - keeps every intermediate node in memory
- **Space** is the bigger problem (more than time)
Time and Memory Requirements

<table>
<thead>
<tr>
<th>d</th>
<th>#Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>111</td>
<td>.01 msec</td>
<td>11 Kbytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>1 msec</td>
<td>1 Mbyte</td>
</tr>
<tr>
<td>6</td>
<td>$\sim 10^6$</td>
<td>1 sec</td>
<td>100 Mb</td>
</tr>
<tr>
<td>8</td>
<td>$\sim 10^8$</td>
<td>100 sec</td>
<td>10 Gbytes</td>
</tr>
<tr>
<td>10</td>
<td>$\sim 10^{10}$</td>
<td>2.8 hours</td>
<td>1 Tbyte</td>
</tr>
<tr>
<td>12</td>
<td>$\sim 10^{12}$</td>
<td>11.6 days</td>
<td>100 Tbytes</td>
</tr>
<tr>
<td>14</td>
<td>$\sim 10^{14}$</td>
<td>3.2 years</td>
<td>10,000 Tb</td>
</tr>
</tbody>
</table>

Assumptions: $b = 10$; 1,000,000 nodes/sec; 100 bytes/node
Uniform Cost Search

- BreadthFirst returns SHALLOW-est Goal... not necessarily best. . .
- Uniform Cost Search:
 Expand LEAST Cost node
- If COST ≡ Depth, then UC = BF

*: If \(g(\text{Successor}(n)) \geq g(n) \) eg, if \(g(n) = \sum c(a_i) \) is SUM of arc-costs
To insure optimality...

- To guarantee OPTIMAL path, need to maintain queue, sorted in increasing order:
Uniform-cost search

- Expand least-cost unexpanded node

Implementation:
- fringe = queue ordered by path cost

- Equivalent to breadth-first if step costs all equal

- **Complete?** Yes, if step cost $\geq \varepsilon$
 - (in trouble if cost = 0)

- **Optimal?** Yes
 - ...as nodes expanded in increasing order of cost

- **Time?** $O(b^{[C^*/\varepsilon]})$
 - where C^* = cost of optimal solution

- **Space?** $O(b^{[C^*/\varepsilon]})$
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first Search
Properties of Depth-First Search

- **Complete?** **No**: fails in infinite-depth spaces, or if loops
 - Modify to avoid repeated states along path
 \[\rightarrow \text{complete in finite spaces} \]

- **Optimal?** **No**
 \[\ldots \text{first found } \neq \text{best} \]

- **Time?** \[O(b^m) : \]
 - terrible if \(m \) is much larger than \(d \)
 - but if solutions are dense, may be much faster than BF

- **Space?** \((b m)\)
 - \(d=12 \Rightarrow 12 \text{ kb, not} 111 \text{ terabytes!} \)
<table>
<thead>
<tr>
<th></th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS/UC</td>
<td>YES</td>
<td>YES</td>
<td>b^d</td>
<td>b^d</td>
</tr>
<tr>
<td>DFS</td>
<td>finite depth</td>
<td>NO</td>
<td>b^m</td>
<td>$b \cdot m$</td>
</tr>
</tbody>
</table>

Time:
- $m=d$ DFS typically wins
- $m>d$ BFS might win
- $m=\infty$ BFS probably better

Challenge:
How to get BFS’s guarantees, using only DFS’s memory??

DFS almost always beats BFS
Which Strategy to Use?

- Depends on problem.
- If there are infinite paths
 ⇒ depth-first is bad
- If goal is at known depth
 ⇒ depth-first is good
- If ∃ large (possibly ∞) branching factor
 ⇒ breadth-first is bad

(Could try nondeterministic search:
Expand an open node at random.)
Depth-Limited Strategy

- Depth-first with depth cut-off \(k \)
 (do NOT expand nodes below depth \(k \))

- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)
Depth-Limited Depth-First-Search

- Depth cut-off: $k=3$

- Complete: No unless soln @ depth $\leq k$
- Optimal: No
- Time: $O(b^k)$
- Space: $O(bk)$
Use an artificial depth cutoff, k.

- For $k = 1$...
 - Use Depth-limited Depth-First Search(k)
 - If succeeds: DONE.
 - If not: increase k by 1
 (Regenerate nodes, as necessary)
Iterative Deepening Search $k=0$
Iterative Deepening Search: $k=1$
Iterative Deepening Search: $k = 2$

Limit = 2
Iterative Deepening Search $k=3$
Iterative Deepening: Analysis

- **Time:** \(\approx\) BFS!
 - ... even though it regenerates intermediate nodes!
 - **Why?** Almost all work ON FINAL LEVEL anyway!

- **Eg:** \(b = 10, d = 5: \)
 - BFS expands \(1 + 10 + 100 + ... + 100,000 = 111,111\)
 - IDS expands
 - bottom level: 1 time
 - second to bottom: 2 times
 - ...
 - toplevel: \(d+1\) times

 total: \((d+1)b^0 + d b^1 + (d-1)b^2 + ... + 3b^{d-2} + 2b^{d-1} + 1b^d\)

 \[... 100,000 + 20,000 + ... + 50 + 6 = 123,456\]

- **Ratio of IDS to BFS:** \(\approx \left[\frac{b}{b-1}\right]^2\)

- Cost of repeating work at shallow depths: MINOR!
Properties of Iterative Deepening Search

- **Complete?** Yes
- **Optimal?** Yes, if step cost = 1
- **Time?**
 \[(d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)\]
- **Space?** \(O(b^d)\)

- IDS does not get stuck on infinite path
- Space: Same as DFS – but with \(d\), not \(m\)
 (as each search is DFS)
BiDirectional Search

- Simultaneously:
 - Search "forward" from start
 - Search "backward" from goal
 Stop when two searches meet in middle

- If branching factor = b in each direction & solution at depth d
 ⇒ need only $O(2b^{d/2}) = O(b^{d/2})$ steps

- Eg: $b = 10$, $d = 6$:
 BFS expands $1,111,111$ nodes
 BiDirectional: 2,222 !

- Issues:
 - How to "search backwards from goal"?
 - What if > 1 goals (chess)?
 - How to check if paths meet? constant time?
 - What type of search done in each half? (BFS)
“Well, lemme think. ...You’ve stumped me, son. Most folks only wanna know how to go the other way.”
Comparing “Blind” Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C*/\epsilon})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
 - Bad when branching factor is high
- Depth-first is space efficient, but not complete nor optimal
 - Bad when search depth is infinite
- Iterative deepening is asymptotically optimal!
Avoiding Repeated States

- May reach same state thru multiple paths

... if operations are REVERSIBLE (∞)

⇒ “Obvious" algorithms may
 - be inefficient (exponentially worse)
 - loop forever!
Repeated States

No

Few

search tree is finite

search tree is infinite

Many

8-queens

assembly planning

8-puzzle and robot navigation
Approaches to Deal w/Repeated State

- Don't return to parent state
 - Don't generate successor ≡ node's parent
- Don't allow cycles
 - Don't generate successor ≡ node's ancestor
- Don't ever revisit state
 - Keep every visited state in memory! $O(b^d)$
Summary of Blind Search

- **Search strategies:**
 - breadth-first, depth-first, iterative deepening, ...

- **Evaluation of strategies:**
 - completeness, optimality, time and space complexity

- **Iterative deepening search**
 - uses only linear space
 - \approx same time as other blind-searchers

- **Avoid repeated states**