Natural Language Processing

Greg Kondrak

Outline

- AI and Language
- Natural Language Processing
- Syntactic Analysis
 - Grammars
 - Parsing
 - Chart Parsing Algorithm

The Turing test

Q: In the first line of your sonnet which reads "Shall I compare thee to a summer's day," would not "a spring day" do as well or better?
A: It wouldn't scan.
Q: How about "a winter's day"? That would scan all right.
A: Yes, but nobody wants to be compared to a winter's day.
Q: Would you say Mr. Pickwick reminded you of Christmas?
A: In a way.
Q: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind the comparison.
A: I don't think you are serious. A winter's day means a typical winter's day, rather than a special one like Christmas.

Eliza – sample dialog

P: Men are all alike.
E: In what way?
P: They're always bugging us about something or other.
E: Can you think of a specific example?
P: Well, my boyfriend made me come here.
E: Your boyfriend made you come here.
P: He says I'm depressed much of the time.
E: I'm sorry to hear you are depressed.
P: It's true... I am unhappy.
E: Do you think coming here will help you not to be unhappy?
P: I need some help, that much seems certain.
E: What would it mean to you if you got some help?
P: Perhaps I could learn to get along with my mother.
Eliza – sample patterns

<table>
<thead>
<tr>
<th>Word</th>
<th>Ran</th>
<th>Pattern</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>like</td>
<td>26</td>
<td>?X</td>
<td>In what way?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>What resemblance do you see?</td>
</tr>
<tr>
<td>am</td>
<td>3</td>
<td>?X are you?</td>
<td>Would you prefer it if it</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>weren’t??</td>
</tr>
<tr>
<td>what</td>
<td>2</td>
<td>?X</td>
<td>Can you think of a specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>example? When?</td>
</tr>
<tr>
<td>alw</td>
<td>5</td>
<td>?X</td>
<td>Why do you ask? Do that interest you?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What understanding isn’t

- Merely reacting in a fixed or random manner to certain words in the text, and ignoring the rest of the text and the wider context.
- Programs like Eliza can give illusion of understanding if circumstances are right. Rarely can illusion be sustained.

Schank’s scripts

“A man went into a restaurant and ordered a hamburger. When the hamburger arrived it was burned to a crisp, and the man stormed out of the restaurant angrily, without paying for the hamburger or leaving a tip”.

Goals of Language Processing

- A scientific theory of communication by language:
 - to understand the structure of language and its use as a complex computational system,
 - to develop the algorithms and data structure that can implement/approximate the system.
Some applications

- Speech recognition
- Text-to-speech synthesizers
- Web-search engines
- Machine translation
- Information extraction
- Automatic summarization
- Question answering

Levels of Analysis

- Phonetics
- Phonology
- Morphology
- Lexicon
- Syntax
- Semantics
- Pragmatics and Discourse

Syntax

- Syntax is the study of the regularities and constraints of word order and phrase structure.
- Which words are grouped together into a "phrase"
- How words within a phrase are related to a common "theme"
- How different phrases are related to each other

Phrase Structures

- Noun phrases
 - A noun phrase consists of a head noun and a set of modifiers.
 - The meaning of the noun phrase is largely determined by the noun.
- Verb phrases
 - A verb phrase consists of a head verb and a set of modifiers.
 - The head verb denotes the action/activity/state
Grammar

- Must specify:
 - the primitive elements
 - how they can combine
- Terminology
 - constituents
 - start symbol, productions, terminals, non-terminals, derivation
 - grammatical vs. ungrammatical

Example Grammar

- S -> NP VP
- NP -> Art N
- NP -> Art Adj N
- NP -> NP PP
- VP -> V
- VP -> V NP
- PP -> P NP
- Art -> the, a
- Adj -> old, happy
- N -> cat, car, sofa
- V -> laugh, scratch
- P -> in, to, under

Parsing

- The task of assigning a correct tree to a string given some Context-Free Grammar.
 - "correct" means consistent with the input and the grammar
 - the leaves of the tree cover all and only the input
 - the tree corresponds to a valid derivation according to the grammar

A parse tree

![Parse Tree Diagram]
Parsing as Search

- The search space is the space of trees generated by the grammar.
- The search is guided by the structure of the space and by the input.

Multiplication of parses

- "List the sales of the products produced in 1972 with the products produced in 1972".
- 455 parses
- Extending the coverage of the grammar to obscure constructions increases the number of undesired parses for common sequences.

Parsing:

Top-Down vs. Bottom-up

- "goal-driven"
- start from the root node S
- expand constituents recursively
- stop when a tree matches the input
- always compatible with the grammar

- "data-driven"
- start from the input words
- group constituents into larger ones
- stop when a tree rooted in S is built
- always compatible with the input

Main Problems

- ambiguity
 - global ambiguity
 - local ambiguity
- repeated parsing of sub-trees
- left-recursion
A smarter parsing algorithm

- solves the left-recursion problem
- does not do repeated work
- solves an exponential problem in polynomial time
- answer: dynamic programming

Combining the Top-Down and the Bottom-Up Approaches

- Use top-down search control strategy with bottom-up filtering
- Depth-First Search strategy
- Search control issues
 - which node to expand next
 - which of the grammar rules to try
- Top-Down, Depth-First, Left-to-Right

Ambiguity

- Categorial: “I saw that gasoline can explode.”
- Lexical: “Joe played baseball/ the piano/ a sonata/ Mozart.”
- Structural: “I saw the man with binoculars.”
- Reference: “Ross put the wine on the table. Because it wasn’t level, it slid off.”

Overlapping fields

- Computer science
- Linguistics
- Cognitive psychology
- Philosophy
- Mathematics
- Engineering