Decisions with Multiple Agents: Game Theory & Mechanism Design

Thanks to R Holte
Decision Theoretic Agents

- Introduction to Probability [Ch13]
- Belief networks [Ch14]
- Dynamic Belief Networks [Ch15]
- Single Decision [Ch16]
- Sequential Decisions [Ch17]

- Game Theory + Mechanism Design [Ch17.6 – 17.7]
Outline

- Game Theory
 - Motivation: Multiple agents
 - Dominant Action
 - Strategy
 - Prisoner's Dilemma
 - Domain Strategy Equilibrium; Paretto Optimum; Nash Equilibrium
 - Mixed Strategy (Mixed Nash Equilibrium)
 - Iterated Games

- Mechanism Design
 - Tragedy of the Commons
 - Auctions
 - Price of Anarchy
 - Combinatorial Auctions
Framework

- Make decisions in Uncertain Environments
 - So far: due to “random” (benign) events
- What if due to OTHER AGENTS?
- Alternating move, complete information, . . .
 - ⇒ 2-player games
 (use minimax, alpha-beta, ... to find optimal moves)
- But
 - simultaneous moves
 - partial information
 - stochastic outcomes
- Relates to
 - auctions (frequency spectrum, . . .)
 - product development / pricing decisions
 - national defense

 Billions of $$s, 100,000's of lives, . . .
Simple Situation

- Two players: **Buyer, Seller**
 - **Seller:** discount (ML + ask $2) or fullPrice (ask $4)
 - **Buyer:** yes or no

<table>
<thead>
<tr>
<th>Seller: discount</th>
<th>Buyer: yes</th>
<th>Buyer: no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B=3; s=0.6</td>
<td>B=0; s=0.1</td>
</tr>
<tr>
<td>Seller: fullPrice</td>
<td>B=1; s=2.5</td>
<td>B=0; s=0.0</td>
</tr>
</tbody>
</table>

- What should **Buyer** do?
 - Seller is either **discount** or fullPrice
 - If **Seller:** discount, then
 Buyer: yes is better (3 vs 0)
 - If **Seller:** fullPrice, then
 Buyer: yes is better (1 vs 0)
 - So clearly **Buyer** should play yes!
 - … For **Buyer**, yes dominates no
What should *Seller* do?

As *Buyer* will play *yes*, either

- *Seller: discount* ⇒ 0.6
- *Seller: fullPrice* ⇒ 2.5

So *Seller* should play *fullPrice*

Note: If *Buyer: no*, then

Seller should play *discount* : 0.1 vs 0.0

... so what... NOT going to happen!

Not “zero-sum” game

Usually not so easy ...
Two-Finger Morra

Two players: O, E
- O plays 1 or 2
- E plays 1 or 2 simultaneously

Let $f = O+E$ be TOTAL #

If f is $\{\text{odd}\}$, then $\{ O \}$ collects f from other

aka Inspection Game; Matching Pennies; . . .

Payoff matrix:

<table>
<thead>
<tr>
<th></th>
<th>O: one</th>
<th>O: two</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: one</td>
<td>E=2; O=-2</td>
<td>E=-3; O=3</td>
</tr>
<tr>
<td>E: two</td>
<td>E=-3; O=3</td>
<td>E=4; O=-4</td>
</tr>
</tbody>
</table>

What should E do? ... O do?
No fixed single-action works ...
Player Strategy

- Pure Strategy ⇒ deterministic action
 - Eg, O plays two

- Mixed Strategy
 - Eg, [0.3 : one; 0.7 : two]

- Strategy Profile ≡ strategy of EACH player
 - Eg, \[\begin{cases} O & [0.3 : \text{one}; 0.7 : \text{two}] \\ E & [0.9 : \text{one}; 0.1 : \text{two}] \end{cases} \]

- 0-sum game:
 - Player#1's gain = Player#2's loss
 - Not always true... Buyer/Seller!
 Sometimes. . .
 - single action-pair can BENEFIT BOTH, or
 - single action-pair can HURT BOTH!
Notes on Framework

In *Seller/Buyer*:

<table>
<thead>
<tr>
<th></th>
<th>Buyer: yes</th>
<th>Buyer: no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discount</td>
<td>B=3; S=0.6</td>
<td>B=0; S=0.1</td>
</tr>
<tr>
<td>fullprice</td>
<td>B=1; S=2.5</td>
<td>B=0; S=0.0</td>
</tr>
</tbody>
</table>

FIXED STRATEGY is optimal:

\[
\begin{cases}
\text{Buyer} & [1.0: yes ; 0.0: no] \\
\text{Seller} & [0.0: discount; 1.0: full Price] \\
\end{cases}
\]

- Can eliminate any row that is DOMINATED by another, for each player.

No FIXED STRATEGY is optimal for Morra:

<table>
<thead>
<tr>
<th></th>
<th>O: one</th>
<th>O: two</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: one</td>
<td>E=2; O=-2</td>
<td>E=-3; O=3</td>
</tr>
<tr>
<td>E: two</td>
<td>E=-3; O=3</td>
<td>E=4; O=-4</td>
</tr>
</tbody>
</table>

- Can have >2 options for each player.
- Different action sets, for different players.
Prisoner's Dilemma

- Alice, Bob arrested for burglary
 ... interrogated separately
 - If BOTH testify: \(A, B \) each get \(-5\) (5 years)
 - If BOTH refuse: \(A, B \) each get \(-1\)
 - If \(A \) testifies but \(B \) refuses: \(A \) gets 0, \(B \) gets \(-10\)
 - If \(B \) testifies but \(A \) refuses: \(B \) gets 0, \(A \) gets \(-10\)

<table>
<thead>
<tr>
<th>(A): testify</th>
<th>(A): refuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B): testify</td>
<td>(A = -5; B = -5)</td>
</tr>
<tr>
<td>(B): refuse</td>
<td>(A = 0; B = -10)</td>
</tr>
</tbody>
</table>

- Price of oil in Oil Cartel
 Disarming around the world
 ...
What should A do?

B is either testify or refuse

- If B: testify, then
 A: testify is better (-5 vs -10)

- If B: refuse, then
 A: testify is better (0 vs -1)

So clearly A should play testify!

⇒ testify is DOMINANT strategy (for A)

What about B?
Prisoner's Dilemma, III

- What should B do?
 Clearly B should testify also (same argument)

- So $\langle A: \text{testify}; B: \text{testify} \rangle$
 is **Dominant Strategy Equilibrium**
 w/payoff: $A = -5$, $B = -5$

- ... but consider $\langle A: \text{refuse}; B: \text{refuse} \rangle$
 Payoff $A = -1$, $B = -1$ is better for BOTH!
 - jointly preferred outcome occurs when each chooses individually worse strategy
Why not \(\langle A: \text{refuse}, B: \text{refuse} \rangle \)?

- \(\langle A: \text{refuse}, B: \text{refuse} \rangle \) is not “equilibrium”:
 - if \(A \) knows that \(B: \text{refuse} \), then \(A: \text{testify} \)!
 - (payoff \(\langle 0, -10 \rangle \), not \(\langle -5, -5 \rangle \))
 - I.e., player \(A \) has incentive to change!

- Strategy profile \(S \) is **Nash equilibrium** iff
 - \(\forall \) player \(P \),
 - \(P \) would do worse if deviated from \(S[P] \),
 - when all other players follow \(S \)

- **Thrm**: Every game has \(\geq 1 \) Nash Equilibrium!

- Every dominant strategy equilibrium is Nash
 - but \(\exists \) Nash Equil. even if no dominant!
 - ... i.e., \(\exists \) rational strategies even if no dominant strategy!
Pareto Optimal

A strategy is **Pareto Optimal** if it cannot be improved for at least one player without worsening the outcome for any other player.

<table>
<thead>
<tr>
<th></th>
<th>A: testify</th>
<th>A: refuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>B: testify</td>
<td>$A=-5$; $B=-5$</td>
<td>$A=-10$; $B=0$</td>
</tr>
<tr>
<td>B: refuse</td>
<td>$A=0$; $B=-10$</td>
<td>$A=-1$; $B=-1$</td>
</tr>
</tbody>
</table>

- $\langle A: \text{refuse}; B: \text{refuse} \rangle$ is **Pareto Optimal**
 - $\neg \exists$ strategy where
 - ≥ 1 players do better,
 - 0 players do worse

- $\langle A: \text{testify}; B: \text{testify} \rangle$ is **NOT** Pareto Optimal
DVD vs CD

- Acme: video game Hardware
 Best: video game Software
- Both WIN if both use DVD
 Both WIN if both use CD

- NO dominant strategies
- 2 Nash Equilibria: ⟨dvd, dvd⟩, ⟨cd, cd⟩
 (If ⟨dvd, dvd⟩ and A switches to cd, then A will suffer...)

Which Nash Equilibrium?
- Prefer ⟨dvd, dvd⟩ as Pareto Optimal
 (payoff ⟨A = 9; B = 9⟩ better than ⟨cd, cd⟩, w/ ⟨A = 5; B = 5⟩)
- ... but sometimes ≥ 1 Pareto Optimal Nash Equilibrium...
Pure? Nash Equilibrium

- **Morra**

 - No PURE strategy
 - (else O could predict E, and beat it)

- **Thrm** [von Neumann, 1928]:
 - For every 2-player, 0-sum game, \exists OPTIMAL mixed strategy

- Let $U(e, o)$ be payoff to E if $E: e$, $O: o$
 - (So E is maximizing, O is minimizing)
Mixed Nash Equilibrium

- Spse E plays \([p : \text{one}; (1 - p) : \text{two}]\)
 For each FIXED \(p\), \(O\) plays pure strategy

- If \(O\) plays \text{one}, payoff is
 \[p \times U(\text{one}, \text{one}) + (1 - p) \times U(\text{one}, \text{two}) = p \times 2 + (1 - p) \times -3 = 5p - 3\]
 If \(O\) plays \text{two}, payoff is \(4 - 7p\)

\[\Rightarrow \text{For each } p, \text{ } O \text{ plays } \begin{cases} \text{one} & \text{if } 5p - 3 \geq 4 - 7p \\ \text{two} & \text{if } 5p - 3 < 4 - 7p \end{cases}\]

- \(E\) can get maximum of \(\{5p - 3, 4 - 7p\}\) ... largest at \(p = 7/12\)
 \(\Rightarrow E\) should play \([7/12 : \text{one}; 5/12 : \text{two}]\)
 Utility is \(-1/12\)
What about O?

- Spse O plays
 \[q : \text{one}; \ (1 - q) : \text{two} \]

 \[\Rightarrow \text{For each } q, \text{ E plays} \begin{cases} \text{one} & \text{if } 5q - 3 \leq 4 - 7q \\ \text{two} & \text{if } 5q - 3 > 4 - 7q \end{cases} \]

 \[\Rightarrow O \text{ should minimize } \{5q - 3, \ 4 - 7q\} \]
 ... smallest when \(q = \frac{7}{12} \)

 \[\Rightarrow O \text{ should play} [\ 7/12 : \text{one}; \ 5/12 : \text{two}] \]
 Utility is \(-1/12\)

- **Maximin equilibrium**... and Nash Equilibrium!

- Coincidence that \(O \) and \(E \) have same strategy.

 NOT coincidence that utility is same!

<table>
<thead>
<tr>
<th></th>
<th>O: one</th>
<th>O: two</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: one</td>
<td>E=2; O=-2</td>
<td>E=-3; O=3</td>
</tr>
<tr>
<td>E: two</td>
<td>E=-3; O=3</td>
<td>E=4; O=-4</td>
</tr>
</tbody>
</table>
Minimax Game Trees for Morra
General Results

- Every 2-player 0-sum game has a maximin equilibrium...often a mixed strategy.

 Thrm: Every Nash equilibrium in 0-sum game is maximin for both players.

- Typically more complex:
 - when \(n \) actions, need hyper-planes (not lines)
 - need to remove dominated pure strategies (recursively)
 - use linear programming
Iterated Prisoner Dilemma

- If A, B play just once...
 expect each to *testify*,
 ... even though suboptimal for BOTH!

- If play MANY times.
 Will both *refuse*, so *BOTH* do better?

- Probably not:
 Suppose play 100 times
 - On R#100, no further repeats, so \(\langle \text{testify, testify} \rangle \)!
 - On R#99, as R#100 known, again use dominant
 \(\langle \text{testify, testify} \rangle \)!
 - ...
 - So sub-optimal all the way down... each gets 500 years!!
Iterated P.D., con't

- Suppose 99% chance of meeting again
 ... not clear which round is last
 ??Co-operation??

- **Perpetual Punishment:**
 - refuse unless other player ever testify
 - As long as both players refuse: $\sum_{t=0}^{\infty} 0.99^t \times (-1) = -100$

If one player testify:
- 0 for this round, then -10 forever
- $\sum_{t=i}^{\infty} 0.99^t \times (-10) = -990$
 (Mutually assured destruction ... both players lose)

\Rightarrow neither player should testify!
\Rightarrow 〈 refuse, refuse 〉 at each step!
Iterated P.D., III

- tit-for-tat
 - \(\text{MyAction}_1 = \text{refuse} \), then
 - \(\text{MyAction}_{t+1} = \text{OpponentAction}_t \)

Works pretty well...
Outline

- Game Theory
 - Motivation: Multiple agents
 - Dominant Action
 - Strategy
 - Prisoner's Dilemma
 - Domain Strategy Equilibrium; Paretto Optimum; Nash Equilibrium
 - Mixed Strategy (Mixed Nash Equilibrium)
 - Iterated Games

- Mechanism Design
 - Tragedy of the Commons
 - Auctions
 - Price of Anarchy
 - Combinatorial Auctions
Mechanism Design: Inverse Game Theory

- Design rules for Agent environment such that
 Agent maximizing OWN utility will maximize COLLECTIVE GOOD

- Eg:
 - Design protocols for
 - Internet Trac routers to maximize global throughput
 - auction off cheap airline tickets
 - assign medical intern to hospitals
 - get soccer players to cooperate

- 1990, gov't auctioned off frequencies due to bad design, lost $$ millions!

- Defn: Mechanism
 - set of strategies each agent may adopt
 - outcome rule G determining payoff for any strategy profile of allowable strategies

- Why complicated?
Tragedy of the Commons

- Every farmer can bring livestock to town commons
 - ⇒ destruction from overgrazing
 - . . . negative utility to ALL farmers

- Every individual farmer acted rationally
 - use of commons is free
 - refraining from use won't help, as others will use it anyway
 (use of atmosphere, oceans, . . .)

- Solution: Setting prices
 - ... must explicate external effects on global utility
 - What is correct price?

- Goal: Each agent maximizes global utility
 - Impossible for agent, as does not know
 - current state
 - effect of actions on other agents

- First: simplify to deal with simpler decision
Price of Anarchy

- Many people want to go from A to B
 - Cost of $A \to \beta$ is 1; from $\alpha \to B$ is 1; $\alpha \leftrightarrow \beta$ is 0
 - Cost from A to α is “% of people on route” $x \in [0,1]$
 - Cost from β to B is “% of people on route” $y \in [0,1]$

- Which path would YOU take?
 - As $x \leq 1$ and $y \leq 1$, clearly $A \to \alpha \to \beta \to B$ is best (always ≤ 2)

- But if EVERYONE takes it, cost $\equiv 2$

- non Anarchy:
 - [A-M] take $A \to \alpha \to B$
 - [N-Z] take $A \to \beta \to B$

Everyone pays only 1.5!
Price of Anarchy

- Many people want to go from A to B
 - Cost of A → β is 1; from α → B is 1; α ↔ β is 0
 - Cost from A to α is “% of people on route” x ∈ [0, 1]
 - Cost from β to B is “% of people on route” y ∈ [0, 1]

- Which path would YOU take?
 - As x ≤ 1 and y ≤ 1, clearly A → α → β → B is best (always ≤ 2)

- But if EVERYONE takes it, cost ≡ 2

- non Anarchy:
 - [A-M] take A → α → B
 - [N-Z] take A → β → B
 Everyone pays only 1.5!
Auctions

- Mechanism for selling goods to individuals
 - ("good" ≡ item for sale)
- Single "good"
 - Each bidder Q_i has utility v_i for good
 - ... only Q_i knows v_i
- **English Auction**
 - auctioneer increments prices of good,
 - until only 1 bidder remains
 - Bidder w/ highest v_i gets good, at price $b_m + d$
 - (b_m is highest OTHER bid, d is increment)
- **Strategy for Q_i:**
 - bid current price p if $p \leq v_i$
“Dominant” as independent of other's strategy
 No need to contemplate other player's strategy

Strategy-proof mechanism:
 players have dominant strategy
 (reveal true incentives)

but... *High communication costs!*
Sealed Bid Auction

- Each player posts single bid to auctioneer
 - Q_i w/highest bid b_i wins
 - ... Q_i pays b_i to get good

Q: Should Q_i bid v_i?

A: Not dominant!

Better is $\min\{ v_i, b_m + \varepsilon \}$

(b_m is max of others)

- Drawbacks:
 - player w/highest v_i might not get good
 ... so seller gets too little!
 ... as “wrong” bidder gets good!
 - bidders spend time contemplating others
Sealed-Bid 2nd-Price Auction

- Each player posts single bid to auctioneer
 - Qi w/ highest bid bi wins
 - ... Qi pays bm, gets good
 - bm is 2nd highest bid

- Q: Should Qi bid vi?
- A: Yes, is dominant!
 - Qi bids bi
 - Utility to Qi is
 \[u_i(b_i, b_m) = \begin{cases}
 v_i - b_m & \text{if } b_i > b_m \\
 0 & \text{otherwise}
 \end{cases} \]
 - u_i(b_i, b_m) = If v_i - b_m > 0, any bid winning auction is good
e.g., bid v_i
 - If v_i - b_m < 0, any bid losing auction is good
e.g., bid v_i
 - So vi is appropriate in all cases
 ... is ONLY value appropriate in all cases!
- “Vickrey Auction” (Nobel prize)
Rabbit Auction

C1: will pay $5 for any one
C2: will pay $9 for a breeding pair
 (Flopsy and one of the others)
C3: will pay $12 for all three
Combinatorial Auctions

- Auction all items simultaneously
- Bid specifies a price and a set of items ("all or nothing")
- Exclusive-OR: use "dummy item" representing the bidder
- Number of Rounds
 - Multi-round or Single-round
- Number of Units (per item)
 - 1 unit vs Many units
- Number of Items
 - 1 item vs Many items
$12 for all three

$12

F
M
J
$9 for a breeding pair
$5 for any one

$5

F

$5

M

$5

J

$5

C1
Applications

- Airport gates
 - Gate in YEG at 2pm
 - Gate in YYZ at 6pm
- Parcels of land
 - 4 adjacent beach-front parcels, for 1 hotel
- FCC spectrum auctions
- Goods distribution routes
- eBay
- …
Winner Determination

- Problem: how to determine who wins?
- Choose a set of bids that
 - are feasible (disjoint) and
 - maximize the auctioneer’s profit.
- NP-complete (set packing problem)
How Should Players Interact?

- Strategy
 - Dominant Strategy Equilibrium
 - Pareto Optimum
 - Nash Equilibrium
 - Mixed Strategy
- Prisoner's Dilemma, Iterated Games
- Mechanism Design
 - Non trivial (Tragedy of the Commons… of Anarchy)
 - Auctions: English, Sealed Bid, Vickrey
 - Combinatorial Auction
Bonus Material: *Poker*
2-player, limit, Texas Hold’em

1,624,350
9 of 19
17,296
O(10^{18})

2 private cards to each player
3 community cards
1 community card
1 community card
The Challenges

- Large game tree
- Stochastic element
- Imperfect information
 - during hand, and after
- Variable number of players (2–10)
- Aim is not just to win, but to maximize winnings
 - Need to exploit opponent weaknesses
Game-Theoretic Approach
Linear Programming

- 2-player, 0-sum game with chance events, mixed strategies, and imperfect information can be formulated as a linear program (LP).
- LP can be solved in polynomial time to produce Nash strategies for P1 and P2.
 - Guaranteed to minimize losses against the strongest possible opponent.
 - “Sequence form” – the LP is linear in the size of the game tree
 (Koller, Megiddo, and von Stengel)
Linear Programming

- 2-player, 0-sum game with chance events, mixed strategies, and imperfect information can be formulated as a linear program (LP).
- LP can be solved in polynomial time to produce Nash strategies for P1 and P2.
- Guaranteed to minimize losses against the strongest possible opponent.
- “Sequence form” – the LP is linear in the size of the game tree.

(Koller, Megiddo, and von Stengel) 10^{18} !!!
Why Equilibrium?

- In symmetric, two player, zero-sum games, playing an equilibrium is equivalent to having a worst-case performance of tying.

- Given the state of the art of modeling of opponents, … not be so bad.
PsOpti (Sparbot)

- Abstract game tree of size 10^7
- Bluffing, slow play, etc. fall out from the mathematics.
- Best 2-player program to date!
- Has held its own against 2 world-class humans
- Won the AAAI ’06 poker-bot competitions
PsOpti2 vs. “theCount”
PsOpti’s Weaknesses

- The equilibrium strategy for the highly abstract game is far from perfect.
- No opponent modelling.
 - Nash equilibrium not the best strategy:
 - Non-adaptive
 - Defensive
 - Even the best humans have weaknesses that should be exploited
http://www.poker-academy.com

- A graph for each half of the duplicate match plotted in Poker Academy Prospector

http://games.cs.ualberta.ca/poker/man-machine/
Results

4 sessions; each 500-hard *duplicate matches*

1. Ali won $390; Phil lost $465.
 -$75 → DRAW

2. Phil: $1570; Ali: –$2495
 -$925 → Polaris WON!

3. Ali: –$625; Phil: +$1455
 +830 → Polaris LOST!

4. Ali: +$4605; Phil: +$110
 +$570 → Polaris LOST!

Total: 1-2-1
… but only $395 over 2000 hands!
Man vs Machine Poker

- Comparable with top human players (2007)
- Attracted international media attention

“We won, not by a significant amount, and the bots are closing in.”
– Phil Laak

“I really am happy it's over. I'm surprised we won ... It's already so good it will be tough to beat in future.”
– Ali Eslami