Partially-Observable MDPs
Decision Theoretic Agents

- Introduction to Probability [Ch13]
- Belief networks [Ch14]
- Dynamic Belief Networks [Ch15]
- Single Decision [Ch16]

- Sequential Decisions [Ch17]
 - MDPs [Ch17.1 - 17.3]
 - (Value Iteration, Policy Iteration, TD(\(\lambda\)))
 - POMDPs [Ch17.4 - 17.5]
 - Dynamic Decision Networks
 - Game Theory [Ch17.6 - 17.7]
Partially Accessible Environment

- In inaccessible environment
 percept NOT enough to determine state
 Partially Observable
 Markov Decision Problem “POMDP”

⇒ Need to base decision on
 DISTRIBUTION over possible states,
 based all previous percepts, . . . (E)

Eg: Given only distance to walls in 4 directions,
 “[2, 1] ≡ [2, 3]”
 but DIFFERENT actions for each!
If \(P(\text{Loc}[2,1] | E) = 0.8 \), \(P(\text{Loc}[2,3] | E) = 0.2 \)
then utility of action \(a \) is
\[0.8 \times U(a | \text{Loc}[2,1]) + 0.2 \times U(a | \text{Loc}[2,3]) \]
Dealing with POMDPs

- Why not view “percept == state”... and just apply MDP alg to “percept”??

1. Markov property does NOT hold for percepts (percept ≠ states)
 - MDP means
 - *next state depends only on current state*
 - But in POMDP:
 - next percept does NOT depend only on current percept

2. May need to take action to *reduce uncertainty*
 - ... not needed in MDP, as always KNOW state
 - ⇒ utility should include ValueOfInformation...
Extreme Case: Senseless Agent

- What if **NO** observations?
- Perhaps
 - act to reduce uncertainty
 - then go to goal
 - (a) Initially: could be ANYWHERE
 - (b) After “Left” 5 times
 - (c) ... then “Up” 5 times
 - (d) ... then “Right” 5 times
- Prob of reaching [4,3]: 77.5%
 - but slow: Utility ≈ 0.08
“Senseless” Multi-step Agents

- Want **sequence of actions** \([a_1, \ldots, a_n]\)

that maximizes the expected utility:

\[
\arg\max_{[a_1, \ldots, a_n]} \sum_{[s_0, \ldots, s_n]} P(s_0, \ldots, s_n | a_1, \ldots, a_n) \times U(s_0, a_1, \ldots, a_n, s_n)
\]

- If deterministic, use problem solving techniques to “solve”
 - (finding optimal sequence)

- Stochastic \(\Rightarrow\) don’t know state. . .

 but deal w/ DISTRIBUTION OVER STATES
Unobservable Environments

- **View Action-Sequence as Big Action**

 For each possible actions-sequence \([a_1, \ldots, a_n]\)

 compute \(P(S_0, S_1, \ldots, S_n | a_1, \ldots, a_n)\)

 compute \(U([s_0, a_1, \ldots, a_n, s_n])\)

 compute \(score = \sum_{[s_0, \ldots, s_n]} P(s_0, \ldots, s_n | a_1, \ldots, a_n) \cdot U([s_0, a_1, \ldots, a_n, s_n])\)

 Return action-sequence that gave maximum \(score\)

- **As Markovian:**

 \[P(S_0, S_1, \ldots, S_n | a_1, \ldots, a_n) = \]
 \[P(S_0) \cdot P(S_1 | S_0, a_1) \cdot P(S_2 | S_1, a_2) \cdot \cdots \cdot P(S_n | S_{n-1}, a_n) \]

 \[U([s_0, a_1, \ldots, a_n, s_n]) = \sum_t R(s_t) \]

 \[\Rightarrow \] For each action sequence, requires searching over all possible sequences of resulting states.

 - If \(P(S_{t+1} | S_t, A_{t+1}) \) deterministic, can be solved using search...
Next action must depend on Complete Sequence of Percepts, \(\mathbf{O} \)

- (That is all available to agent!)

Compress \(\mathbf{O} \) into “distribution over states”

- \(\mathbf{p} = [p_1, \ldots, p_n] \) where \(p_i = P(\text{state} = i \mid \mathbf{O}) \)

Given new percept \(\mathbf{O}_t \),

\(\mathbf{p}' = [P(\text{state} = i \mid \mathbf{O}, \mathbf{O}_t)] \)
POMDPs

- Partially Observable Markov Decision Problem
 - $M^a_{s,s'} \equiv P(s' \mid s, a)$: transition
 - $R(s)$: reward function
 - $O(s, o) \equiv P(o \mid s)$: observation model
 - [If senseless: $O(s, \{\}) = 1.0$]
 - Belief state $b(.) \equiv$ distribution over states
 - $b(s) \equiv P(s \mid ...)$ is prob b assigns to s
 - Eg: $b_{\text{init}} = \langle 1/9, 1/9, ... 1/9, 0,0 \rangle$
 - Given $b(.)$, after action a, observation o
 - $b'(s') = O(s', o) \sum_s P(s \mid a, s') b(s)$
 - $b' = \text{Forward}(b, a, o)$

Filtering!

- Optimal action depends only on current belief state!
 - . . . not on actual state
What to do, in POMDP?

Policy π maps BELIEF STATE b to ACTION a

$\pi(b) = a \quad \pi: [0, 1]^n \mapsto \{ \text{North, East, South, West} \}$

Given optimal policy π^*

1. Given b_i compute/execute action $a_i = \pi(b_i)$
2. Receive observation o_i
3. Compute $b_{i+1} = \text{Forward}(b_i, a_i, o_i)$

With MDPs, can just "reach" new state ... no observations...
With POMDPs, need to know observation o_i to determine b'

Some POMDP actions may be

- to reduce uncertainty
- to gather information

How to compute optimal π^* ?
... perhaps make POMDP look like MDP?
Transform POMDP into MDP?

- Every MDP needs
 - Transition M: State \rightarrow Action \rightarrow Distribution over State
 - Reward R: State \rightarrow \mathbb{R}

\Rightarrow Given “belief state” b, need

- $\rho(b) =$ (expected) reward for being in b
 $$= \sum_s b(s) R(s)$$

- $\mu(b, a, b') = P(b' | b, a)$
 $$\ldots \text{prob of reaching } b' \text{ if take action } a \text{ in } b. \ldots$$

Depends on observation o:

- $P(b' | a, b) = \sum_o P(b' | o, a, b) P(o | a, b)$
 $$= \sum_o \delta[b' = \text{Forward}(b, a, o)] P(o | a, b)$$

- where $\delta[b' = \text{Forward}(b, a, o)] = 1$ \text{ iff } b' = \text{Forward}(b, a, o)$

- Need DISTRIBUTION over observations . . .
Distribution over Observations

\[P(o|a,b) = \sum_{s'} P(o,a,s',b) P(s'|a,b) \]
\[= \sum_{s'} O(s',o) P(s'|a,b) \]
\[= \sum_{s'} O(s',o) \sum_{s} P(s'|a,s) b(s) \]

So...

\[\mu^a_{b,b'} = P(b'|a,b) \]
\[= \sum_{o} P(b'|o,a,b) P(o|a,b) \]
\[= \sum_{o} \sum_{s'} \sum_{s} O(s',o) \sum_{s} P(s'|a,s) b(s) \]
POMDP \Rightarrow? MDP ??

- $\mu_{b,b'}^a = P(b' | b, a)$
- $\rho(b) = \text{(expected) reward}$
- ... define OBSERVABLE MDP!
 (Agent can always observe its beliefs!)
- Optimal policy for this MDP $\pi^*(b)$
 is optimal for POMDP

 Solving POMDP on physical state space

 \equiv

 solving MDP on corresponding BELIEF STATE SPACE!

- But. . . this MDP has continuous
 (and usually HIGH-Dimension)
 state space!
- Fortunately . . .
Transform POMDP into MDP

- Fortunately, ∃ versions of
 - value iteration
 - policy iteration

that apply to such continuous-space MDPs
(Represent $\pi(b)$ as set of REGIONS of belief space
 each with specific optimal action)
$U \equiv$ LINEAR FUNCTION of b w/in each region
Each iteration refines boundaries of regions . . .

- Solution:

 \[
 \text{[Left, Up, Up, Right, Up, Up, Right, Up, Up, ...]}
 \]

 (Left ONCE to ensure NOT at [4,1],
 then go Right and Up until reaching [4, 3].)

 Succeeds 86.6%, quickly. . .

 Utility = 0.38

- In general: finding optimal policies is PSPACE-Hard!
Solving POMDP, in General

function DECISION-THEORETIC-AGENT(percept) **returns** action

- calculate updated probabilities for current state based on available evidence including current percept and previous action
- calculate outcome probabilities for actions given action descriptions and probabilities of current states
- select *action* with highest expected utility given probabilities of outcomes and utility information

return action

- To determine current state S_t:
 - Deterministic: previous action a_{t-1} from S_{t-1} determines S_t
 - Accessible: current percepts identify S_t
 - Partially accessible: use BOTH action and percepts

- Computing outcome probabilities:
 . . . as above

- Computing *expected utilities*:
 At time t, need to think about making decision D_{t+i}
 At that time $t+i$, agent will THEN have percepts E_{t+1}, \ldots, E_{t+i}
 But not known now (at time t). . .
Challenges

- To decide about \(A_t \) (action at time \(t \)), need distribution of current state based on:
 - all evidence (\(E_i \) is evidence at time \(i \))
 - all actions (\(A_i \) is action at time \(i \))

\[
Bel(S_t) \equiv P(S_t | E_1, \ldots, E_t, A_1, \ldots, A_{t-1})
\]

\[\Rightarrow \text{very hard to compute, in general}\]

- But. . . some simplifications:
 - \(P(S_t | S_1, \ldots, S_{t-1}, A_1, \ldots, A_{t-1}) = P(S_t | S_{t-1}, A_{t-1}) \)
 Markov
 - \(P(E_t | S_1, \ldots, S_t, E_1, \ldots, E_t, A_1, \ldots, A_{t-1}) = P(E_t | S_t) \)
 Evidence depends only on current world
 - \(P(A_{t-1} | A_1, \ldots, A_{t-2}, E_1, \ldots, E_{t-1}) = P(A_{t-1} | E_1, \ldots, E_{t-1}) \)
 Agent acts based only input. . . and knows what it did

RECURSIVE form of \(Bel() \) updated with each evidence:

- **Prediction Phase:**
 Predict distribution over state, before evidence

\[
Bel(S_t) = \sum_{s_{t-1}} P(S_t | S_{t-1} = s_{t-1}, A_{t-1}) \, Bel(S_{t-1} = s_{t-1})
\]

- **Estimation Phase:** ... Incorporate \(E_t \)

\[
Bel(S_t) = \alpha \, P(E_t | S_t) \, Bel(S_t)
\]
function DECISION-THEORETIC-AGENT(E_t) returns an action
inputs: E_t, the percept at time t
static: BN, a belief network with nodes X
 Bel(X), a vector of probabilities, updated over time

\[
\begin{aligned}
\tilde{Bel}(X_t) &\leftarrow \sum_{X_{t-1}} P(X_t \mid X_{t-1}=x_{t-1}, A_{t-1}) \ Bel(X_{t-1}=x_{t-1}) \\
Bel(X_t) &\leftarrow \alpha \ P(E_t \mid P X_t) \tilde{Bel}(X_t) \\
action &\leftarrow \arg \max_{A_t} \ \sum_{X_t} \left[\tilde{Bel}(X_t=x_t) \sum_{X_{t+1}} P(X_{t+1}=x_{t+1} \mid X_t=x_t, A_t) \ U(x_{t+1}) \right] \\
\end{aligned}
\]
return action

- Dependencies are reasonable:
 - action mode: \(P(S_t \mid S_{t-1}, A_{t-1}) \)
 - sensor model: \(P(E_t \mid S_t) \)
Partially Observable MDPs
Dynamic Decision Networks
Approximate Method for Solving POMDP's

Two Key Ideas:
- Compute optimal value function \(U(S) \) assuming complete observability
 (Whatever will be needed later, will be available)
- Maintain \(\text{Bel}(S_t) = P(S_t | E_t, A_t, S_{t-1}, ..., S_0, E_0) \)

At each time \(t \):
- Observe current percept \(E_t \)
- Update \(\text{Bel}(S_t) \)
- Choose next \(k \) optimal actions \([a_{t+1}, ..., a_{t+k}]\)
to maximize
\[
\sum_{S_{t+1}, ..., S_{t+k}} \sum_{E_{t+1}, ..., E_{t+k}} P(S_{t+1} | S_t, a_{t+1}) \cdot P(E_{t+1} | S_{t+1}) \cdot \cdots \cdot P(S_{t+k} | S_{t+k-1}, a_{t+k}) \\
[\sum_{i=1}^{k} R(S_{t+i} | S_{t+i-1}, a_{t+i}) + U(S_{t+k})]
\]
- Perform action \(a_{t+1} \)
Look-ahead Search

ExpectiMiniMax

\[D_t \text{ in } P(X_t | E_{1:t}) \]
\[E_{t+1} \]
\[D_{t+1} \text{ in } P(X_{t+1} | E_{1:t+1}) \]
\[E_{t+2} \]
\[D_{t+2} \text{ in } P(X_{t+2} | E_{1:t+2}) \]
\[E_{t+3} \]
\[U(X_{t+3}) \]
Wrt Dynamic Decision Networks

- Handle uncertainty correctly… sometimes efficiently…
- Deal with streams of sensor input
- Handle unexpected events (as have no fixed “plan”)
- Handle noisy sensors, sensor failure
- Act in order to obtain information as well as to receive rewards
- Handle relatively large state spaces as they decompose state into set of state var's with sparse connections
- Exhibit graceful degradation under time pressure and in complex environments using various approximation techniques
Open Problems wrt Probabilistic Agents

- First-order probabilistic representations

 If any car hits lamp post going over 30mph, occupants of car injured with probability 0.60.

- Methods for scaling up MDP's

- More efficient algorithms for POMDP's

- Learning environment

 - M^a_{ij}, $P(E | S)$, ...
Probabilistic Agents Summary

- **Three key components:**
 - $P(S' \mid S,A)$ (action model)
 - $P(E \mid S)$ (sensor model)
 - $R(S' \mid S,A)$ (reward function)

- In accessible environments,
 - \{ Value iteration, Policy iteration \} work well.
 - Each computes local (state) utility function, optimal policy.

- In \{ unobservable, partially-observable \} environments,
 - lookahead search gives approx solutions
 - Updating current beliefs in a DDN is easy.
 - Look-ahead search is hard.