“STRIPS” Planning

- Set of operators, where each operator has
 - Set of parameters
 - Set of preconditions
 - Set of effects, consisting of
 add effects and
 delete effects.

- Set of objects to instantiate operator’s parameters
 fully instantiated operator \(\equiv \) action

- Set of propositions representing initial state

- Set of propositions representing goals

Planning problem: Find sequence of actions that, starting in initial state, achieve all the goals
Approaches to STRIPS planning

• Search through space of world states
 – forward search,
 – regression search
 – bi-directional search
 – means-ends analysis
 – ...

• Search through space of plans
 – total order planning
 – partial order planning

• Search through planning graph
GraphPlan Approach

1. Construct a “PlanGraph” that contains all valid plans + other stuff (invalid plans)
 up to a maximum depth

2. Search PlanGraph for valid plan
 ... then return that plan
Simple Cake-Eating Domain

- **Initial**: HaveCake \(\land \neg \text{EatenCake} \)

- **Goal**: HaveCake \(\land \text{EatenCake} \)

- **Actions**:

 \[
 \begin{align*}
 \text{Op}_0 \quad & \text{Eat} \\
 \text{PreC}: & \text{HaveCake} \\
 \text{Eff}: & \neg \text{HaveCake} \land \text{EatenCake}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{Op}_0 \quad & \text{Bake} \\
 \text{PreC}: & \neg \text{HaveCake} \\
 \text{Eff}: & \text{HaveCake}
 \end{align*}
 \]

- **PlanGraph**

Graph-Plan
Parts of a PlanGraph

<table>
<thead>
<tr>
<th>S_0</th>
<th>A_0</th>
<th>S_1</th>
<th>A_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have(Cake)</td>
<td></td>
<td>Have(Cake)</td>
<td>Bake(Cake)</td>
<td>Have(Cake)</td>
</tr>
<tr>
<td>Eat(Cake)</td>
<td>Eaten(Cake)</td>
<td>Eat(Cake)</td>
<td></td>
<td>Eaten(Cake)</td>
</tr>
<tr>
<td>\negEaten(Cake)</td>
<td>\negEaten(Cake)</td>
<td>\negEaten(Cake)</td>
<td>\negEaten(Cake)</td>
<td>\negEaten(Cake)</td>
</tr>
</tbody>
</table>

"2-leveled" Graph $\langle S_0, A_0, S_1, A_1, \ldots \rangle$

- S_0: propositions in initial state
- A_i: each action whose preconditions all occur in level S_{i-1}
- S_i: each prop’n that is ADDED/DELETED by
 * an action in level A_i
 * a “No-Op” (persistence)

- **Mutex** links
 * between actions in level A_i
 * between propositions in level S_i
 "mutually exclusive"
 "cannot occur in same plan"
Mutex Conditions #1: Actions

Between 2 actions O_1 and O_2, same level A_i:

- **Inconsistent effects**

 $O_1:Eff$ negates $O_2:Eff$

 \[
 \text{EatenCake, NoOp(HaveCake)} \text{ disagree wrt "HaveCake"}
 \begin{align*}
 \text{EatenCake}:Eff & = \neg \text{HaveCake} \\
 \text{NoOp(HaveCake)}:Eff & = \text{HaveCake}
 \end{align*}
 \]

- **Interference**

 $O_1:Eff$ negates $O_2:PreC$

 \[
 \text{EatenCake interferes with NoOp(HaveCake)}: \\
 \begin{align*}
 \text{EatenCake}:Eff & = \neg \text{HaveCake} \\
 \text{NoOp(HaveCake)}:PreC & = \text{HaveCake}
 \end{align*}
 \]

- **Competing Needs**

 $O_1:PreC$ negates $O_2:PreC$

 \[
 \begin{align*}
 \text{Bake}:PreC & = \neg \text{HaveCake} \\
 \text{Eat}:PreC & = \text{HaveCake}
 \end{align*}
 \]
Mutex Conditions\#2: Propositions

Between 2 propositions ρ_1 and ρ_2, same level S_i:

- **Negation**
 \[\rho_1 = \neg \rho_2 \]

- **Inconsistent Support**
 Every action achieving ρ_1 (from S_{i-1}) is mutex with every action achieving ρ_2

In S_1:

- **HaveCake** mutex **EatenCake** as only way to achieve **HaveCake**:
 - NoOp(HaveCake)
- is mutex with only way to achieve **EatenCake**:
 - Eat

N.b.: Not mutex at S_2!
A valid plan is “2-leveled” graph
- two kinds of nodes
 (propositions, actions)
 alternates: proposition level, action level
- 5 kinds of edges
 * precondition \((S_i \rightarrow A_i)\)
 * add effect \((A_i \rightarrow S_{i+1})\)
 * delete effect \((A_i \rightarrow S_{i+1})\)
 * mutex-action \((A_i \leftrightarrow A_i)\)
 * mutex-prop \((S_i \leftrightarrow S_i)\)

- Include action \(O\) at action-level \(A_i\)
 if all preconditions at proposition-level \(S_i\)

- Include proposition \(\rho\) at proposition-level \(S_i\)
 if it is add/delete effect of action \(O \in A_{i-1}\)
 (including no-op actions)

Restriction:
Allow actions \(O_1, O_2\) at same time \(t\)
ONLY if don’t interfere with each other

- **PlanningGraph** \(\approx\) valid plan but
 without no-interfere restriction
function Graphplan(problem) returns solution or failure
graph ← Initial-Planning-Graph(problem)
goals ← Goals[problem]
loop do
 if goals all non-mutex in last level of graph then do
 solution ← Extract-Solution(graph, goals, Length(graph))
 if solution ≠ failure then return solution
 else if No-Solution-Possible(graph) then return failure
 graph ← Expand-Graph(graph, problem)
end
Flat-Tire Domain

Fl= Flat; Sp= Spare; Ax= Axel; Tr= Trunk; Gr= Ground

- **Initial:** $\text{At}(\text{Fl}, \text{Ax}) \land \text{At}(\text{Sp}, \text{Tr})$

- **Goal:** $\text{At}(\text{Sp}, \text{Ax})$

- **Actions:**

 - **TakeOutSpare**

 $\text{Op} \left(\begin{array}{l}
 \text{TakeOutSpare} \\
 \text{PreC: } \text{At}(\text{Sp}, \text{Tr}) \\
 \text{Eff: } \neg \text{At}(\text{Sp}, \text{Tr}) \land \text{At}(\text{Sp}, \text{Gr})
 \end{array} \right)$

 - **RemoveFlat**

 $\text{Op} \left(\begin{array}{l}
 \text{RemoveFlat} \\
 \text{PreC: } \text{At}(\text{Fl}, \text{Ax}) \\
 \text{Eff: } \neg \text{At}(\text{Fl}, \text{Ax}) \land \text{At}(\text{Fl}, \text{Gr})
 \end{array} \right)$

 - **PutOnSpare**

 $\text{Op} \left(\begin{array}{l}
 \text{PutOnSpare} \\
 \text{PreC: } \text{At}(\text{Sp}, \text{Gr}) \land \neg \text{At}(\text{Fl}, \text{Ax}) \\
 \text{Eff: } \neg \text{At}(\text{Sp}, \text{Gr}) \land \text{At}(\text{Sp}, \text{Ax})
 \end{array} \right)$

 - **LeaveOverNight**

 $\text{Op} \left(\begin{array}{l}
 \text{LeaveOverNight} \\
 \text{PreC: } \{\} \\
 \text{Eff: } \neg \text{At}(\text{Sp}, \text{Gr}) \land \neg \text{At}(\text{Sp}, \text{Ax}) \land \neg \text{At}(\text{Sp}, \text{Tr}) \\
 \land \neg \text{At}(\text{Fl}, \text{Gr}) \land \neg \text{At}(\text{Fl}, \text{Ax})
 \end{array} \right)$
Flat-Tire in GraphPlan
Trace of GraphPlan Algorithm #1

- S_0: initial facts (include \neg-facts)

- As $\text{At}(Sp, Ax) \notin S_0$
do not call Extract-Solution

- Expand-Graph forms A_0 with
 * 3 “real” actions
 * 5 no-op actions;
 S_1 is effects

 Expand-Graph then finds
 * 4 action-mutex within A_0
 * 4 prop-mutex within S_1

- As $\text{At}(Sp, Ax) \notin S_1$
do not call Extract-Solution

- Expand-Graph forms A_1 with
 * 4 “real” actions
 * 7 no-op actions
 S_2 is effects
Mutex wrt FlatTire

- **Inconsistent Effects**
 \[
 \text{RemoveSpare} + \text{LeaveOvernight} \\
 \text{RemoveSpare: Eff} = \text{At(Sp, Gr)} \\
 \text{LeaveOvernight: Eff} = \neg \text{At(Sp, Gr)}
 \]

- **Interference**
 \[
 \text{RemoveFlat} + \text{LeaveOvernight} \\
 \text{RemoveFlat: PreC} = \text{At(Sp, Ax)} \\
 \text{LeaveOvernight: Eff} = \neg \text{At(Sp, Ax)}
 \]

- **Competing Needs**
 \[
 \text{RemoveFlat} + \text{PutOnSpare} \\
 \text{RemoveFlat: PreC} = \text{At(Fl, Ax)} \\
 \text{PutOnSpare: Eff} = \neg \text{At(Fl, Ax)}
 \]

- **Inconsistent Support**
 \[
 \text{At(Sp, Ax)} + \text{At(Fl, Ax)} \text{ in } S_2 \\
 \text{At(Sp, Ax) by } \text{PutOnSpare} \\
 \text{At(Fl, Ax) by } \text{NoOp[At(Fl, Ax)]} \\
 \text{and} \\
 \text{PutOnSpare mutex NoOp[At(Fl, Ax)]}
 \]

 (Can’t put 2 objects in same place at same time)
Trace of GraphPlan Algorithm #2

- “All” goal literals, \([\text{At}(Sp, Ax)]\), in \(S_2\)
 none are mutex . . .

- So there MAY be solution
 . . . call Extract-Solution

Extract-Solution(. . .)
 Let \(G_n\) be the GOAL at last level, \(S_n\)
 For each \(i = n..1\)
 * Let \(H_i\) be a conflict-free subset of \(A_{i-1}\),
 that covers \(G_i\) (in \(S_i\))
 * Let \(G_{i-1}\) be preconditions of \(H_i\)
 . . . until reach state in \(S_0\) satisfying all goals

Action-set \(H\) is “conflict-free”

\[\equiv\]
no pair of \(H\) are mutex, and
no pair of preconditions (in \(G\)) are mutex
Trace of Extract-Solution

- $G_2 = \{ \text{At}(\text{Sp}, \text{Ax}) \}$
 $H_2 = \{ \text{PutOnSpare} \}$

- $G_1 = \{ \text{At}(\text{Sp}, \text{Gr}), \neg \text{At}(\text{Fl}, \text{Ax}) \}$

What is H_1?

- Achieve $\text{At}(\text{Sp}, \text{Gr})$ by \boxed{\text{TakeOutSpare}}

- Achieve $\neg \text{At}(\text{Fl}, \text{Ax})$ by
 #1. LeaveOvernight
 #2. RemoveFlat

 But not #1, as LeaveOvernight is mutex with TakeOutSpare

$\Rightarrow H_1 = \{ \text{TakeOutSpare}, \text{RemoveFlat} \}$

- $G_0 = \{ \text{At}(\text{Sp}, \text{Tr}), \text{At}(\text{Fl}, \text{Ax}) \}$

 As in $G_0 \subseteq S_0$, DONE!
Extending PlanGraph

Add action level A_i:

ForEach action(*) O

If O’s preconditions all true in prop-level S_i, and NOT mut-ex,

Then add O to level A_i

include precondition-links
create mutex (O:actions-I-am-exclusive-of)

Add prop-level S_{i+1}:

ForEach effect ρ of each action in action-level A_i

Add ρ to prop-level S_{i+1}

Add $S \leftarrow \rho$ add- or delete- links

Mark ρ_1, ρ_2 as mutex if

each way of generating ρ_1 is mutex to
each way of generating ρ_2

(*) each instantiation of each operator; including “no-op”s
Correctness

Graphplan is sound and complete:
* any plan Graphplan finds is a legal plan
* if ∃ legal plan then Graphplan will find one.

| Theorem: If ∃ valid plan using \(\leq t \) time steps, then plan is subgraph of (depth-\(t \)) Planning Graph. |

If Goals not satisfiable by any valid plan, then GraphPlan will halt, w/failure, in finite time.

(extends most partial-order planners)
Leveling Off

• GraphPlan ≈ Iterative deepening
 When to stop??

• **Lemma:** If no valid plan exists, then
 ∃ a prop-level S_n s.t. all future proposition
 levels are identical to S_n
 – Identical \equiv same propositions, mutual exclusions
 – graph has “leveled off after S_n”

• **Corollary:** No solution exists if
 – a goal does not appear in S_n or
 – S_n has mutually exclusive goals

• **Subtlety:**
 \{ on(A,B), on(B,C), on(C,A) \}
Termination Condition

- Let S_t^i denote set of memoized goal sets at level i after an unsuccessful stage t

- **Theorem:** If the graph has leveled off at level n and stage t has passed in which $|S_{n-1}^t| = |S_n^t|$, then no valid plan exists
Termination Proof

- As PlanGraph gets deeper...
 - Literals increase monotonically
 - Actions increase monotonically
 - Mutex decrease monotonically
 * If O_1 and O_2 are mutex in A_k, then mutex in A_i $i = 1..k$ provided $O_1, O_2 \in A_i$
 * If ρ_1 and ρ_2 are mutex in S_k, then mutex in S_i $i = 1..k$ provided $\rho_1, \rho_2 \in S_i$

- Only finite # of actions/literals, planning graph must eventually “level off”
Experimental Results

"2 Rockets Problem"

"Link-Repeat Problem"
Accounting for Graphplan’s Efficiency

- Mutual exclusions
 (Most constraints are pair-wise mut-ex’s;
 Propagating constraints prunes large part of space.)

- Consideration of parallel plans
 (Valid parallel plans are short, wrt total plan
 \(\Rightarrow \) reduces cost of constructing pgraph, search)

- Memoizing
 (Many goal-sets appear > 1)

- Low-level costs
 (Graphplan avoid cost of instantiation during search)
Efficiency
Size of Planning Graph

Theorem: Consider planning problem with
- \(n \) objects,
- \(p \) propositions in initial state,
- \(m \) operators,
 each w/constant number of parameters
Let \(l \) be length of longest add list.
Then size of a \(t \)-level planning graph, and
time needed to create the graph,
are polynomial in \(n, m, p, l, \) and \(t \).

- Empirically: exclusion relations most expensive part of graph creation
 Graph creation only significant in simple problems

⇒ As graph is small,
“finding mut-ex” is hard as planning... PSpace-hard
Comments

- PlanGraph \neq StateGraph

 plan \equiv path in StateGraph but
 plan \equiv flow in PlanGraph

- Like “Traditional TotalOrder Planner”:
 considers action at $FIXED$ time

 Like “Partial Order Planner”
 generates partially-ordered plans

- **Parallel Plan**: can execute many actions at once
 if no conflicts
 (eg, load all items at once)

- Guaranteed to find **SHORTEST** plan

- \approx Not sensitive to given order of goals
Final Comments

• Planning \equiv Searching

 \Rightarrow GraphPlan

 \ldots a new approach to Planning

• Future work
 \begin{itemize}
 \item Learning (from one plan to next)
 \item Two-way search (fact\rightarrowgoal, goal\rightarrowfact)
 \item beyond “Strips”-like domains
 creating objects, \forall, \ldots
 \item incorporating other types of constraints
 \item Why guarantee SHORTEST path?
 \end{itemize}

• http://www.cs.cmu.edu/~avrim/graphplan.html
SatPlan

- Convert plan-situation
 (Operators, Initial/Final Conditions, ...)
 to SAT
 (Up to fixed length)

- Run WalkSat to find
 satisfying assignment \(\equiv \) plan...

 ...iterative deepening

- Plays to SatPlan’s strength,
 as \(\exists \) satisfying assignment...