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Abstract

The general Bandpass problem is NP-hard and was claimed NP-hard when the number of
columns is three. Previously we designed a polynomial time row-stacking algorithm for the three
column case, to produce a solution that is at most 1 less than the optimum. We show in this
paper that for any bandpass number B ≥ 2, an optimal solution is always achievable in linear
time.
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1 Introduction

The Bandpass problem can be described as follows [2, 1, 3]: Given a binary matrix A of dimension
m×n, and a positive integer B called the bandpass number, a set of B consecutive non-zero elements
in a column of the matrix is called a bandpass. When counting the number of bandpasses, no two
of them in the same column are allowed to have common rows. The goal of the problem is to find
an optimal permutation of rows of the matrix such that the total number of extracted bandpasses
is maximized.

This combinatorial optimization problem arises in optical communication networks, where the
goal is to design an optimal packing of information flows on different wavelengths into groups such
that the highest available cost reduction can be obtained using wavelength division multiplexing
technology [1]. In such an application, the input binary matrix Am×n represents a sending point
which has m information packages to be sent to n different destination points, where aij = 1 if
information package i is not destined for point j, or aij = 0 otherwise. Essentially, B consecutive
1’s indicate an opportunity for merging information and thus reducing the communication cost.
Though multiple bandpass numbers can be used in practice, for the sake of complexities and costs,
usually only one fixed bandpass number is considered [1].

The general Bandpass problem, for any fixed B ≥ 2, has been proven to be NP-hard [1, 3],
and can be approximated to some extent [3]. The Bandpass problem was firstly incorrectly proven
to be NP-hard in [1], for all n ≥ 3, where a reduction to the Integer Programming problem then
to the 3SAT problem was used. (In fact, the restricted decision version of the Bandpass problem
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“proven to be NP-complete”, in which there are B + 2 rows, can be easily solved by noticing
that the yes-instances should contain at least B − 2 rows of all-1’s.) A correct NP-hardness proof
involves a reduction from the well-known Hamiltonian path problem, where the constructed matrix
A has more columns (corresponding to edges) than rows (corresponding to vertices). Thus, it
would be interesting to investigate the special yet practical capacitated broadcasting case in which
the number of columns/destinations, n, is bounded. To this purpose, Lin proposed a row-stacking
algorithm, which produces an optimal solution when n = 1, 2, and produces a solution that is at
most 1 less than the optimum when n = 3 [3]. In this paper, we show that the three column
Bandpass problem is solvable in linear time for any B ≥ 2, by a modified row-stacking algorithm to
take care of the exceptional cases that cannot be handled by the original row-stacking algorithm.

Outline of the presentation. In the next section, we summarize the row-stacking algorithm
originally presented in [3], and the cases where it does and where it does not guarantee an optimal
solution, respectively. Among the latter category of cases where the row-stacking algorithm does
not guarantee an optimal solution, we prove for some of them that the row-stacking solution is
actually optimal, and for the other we modify the algorithm a little bit to produce an optimal
solution.

The rest of paper presentation involves case by case analysis on the input instance. We have
tried hard to group them and wish to deliver a short argument covering all distinct cases. However
such a short argument is seemingly unlikely, we are able to pinpoint two extreme cases, presented
in Section 3, to which several other cases can be reduced to prove the optimality of the row-stacking
solution. Following the notations introduced in the next section, Sections 4 and 5 discuss the cases
when r6 = 0 and when r6 6= 0, respectively. Within Section 4, Subsections 4.1 and 4.2 consider
the subcases where q6 = 0 and where q6 6= 0, respectively; In Section 5, Subsection 5.1 is for the
existence of a zero among r2, r4, r8; Subsection 5.2 is for the non-existence of a zero among r2, r4, r8.

2 The preliminaries

Let n denote the number of columns in the Bandpass problem, and m the number of rows. The
main result in this paper is an O(m)-time exact algorithm for n = 3, thus disproving the claim
that the Bandpass problem with n ≥ 3 is NP-hard made in [1]. Previously, exact algorithms were
proposed for n = 1 and n = 2 [1], which were formalized into the row-stacking algorithm [3]. This
row-stacking algorithm can also be applied for n = 3 to produce a row permutation achieving the
maximum number of bandpasses, or 1 less.

In more details, for n = 1, the row-stacking algorithm puts all non-zero rows consecutively,
which is an optimal permutation, no matter what B is; For n = 2, the row-stacking algorithm
firstly classifies rows into (0 0)-, (0 1)-, (1 0)-, and (1 1)-rows, then stacks them in the order of
(1 0)-rows, then (1 1)-rows, then (0 1)-rows, lastly (0 0)-rows; this gives an optimal row permutation,
again no matter what B is, since all 1’s in each column are placed consecutively.

For n = 3, there are eight types of rows: (0 0 0)-, (0 0 1)-, (0 1 0)-, (0 1 1)-, (1 0 0)-, (1 0 1)-,
(1 1 0)-, and (1 1 1)-rows; and assume there are m1,m2, . . . ,m8 of them respectively. The row-
stacking algorithm stacks them in the order of firstly (1 0 0)-rows, then sequentially (1 0 1)-rows,
(1 1 1)-rows, (1 1 0)-rows, (0 1 0)-rows, (0 1 1)-rows, (0 0 1)-rows, and lastly (0 0 0)-rows (see
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Figure 1). In this row placement, the 1’s in each of the first two columns appear consecutively,

row type in order quantity
(0, 0, 0) m1

(0, 0, 1) m2

(0, 1, 1) m3

(0, 1, 0) m4

(1, 1, 0) m5

(1, 1, 1) m6

(1, 0, 1) m7

(1, 0, 0) m8

Figure 1: The row placement produced by the row-stacking algorithm.

but the 1’s in the third column could be separated into two bands. Therefore, the number of
bandpasses in this row-stacking solution differs the optimum by at most 1. Since (0, 0, 0)-rows do
not contribute to bandpasses, we ignore them hereafter. Further let mi = qiB + ri, where qi, ri are
the quotient and remainder of dividing B into mi, for i = 2, . . . , 8, and

MAX =
⌊
m5 + m6 + m7 + m8

B

⌋
+

⌊
m3 + m4 + m5 + m6

B

⌋
+

⌊
m2 + m3 + m6 + m7

B

⌋
, (2.1)

which is an upper bound on the number of bandpasses that can ever be generated. Since the
number of bandpasses in the row-stacking solution is⌊

m5 + m6 + m7 + m8

B

⌋
+

⌊
m3 + m4 + m5 + m6

B

⌋
+

⌊
m2 + m3

B

⌋
+

⌊
m6 + m7

B

⌋
≥ MAX − 1,

we have
MAX ≥ OPT ≥ MAX − 1, (2.2)

where OPT denotes the number of bandpasses in the optimal solution. This proves the following
lemma.

Lemma 1 [3] The three column Bandpass problem can be solved almost exactly in linear time, to
obtain a row permutation generating either the maximum number of, or one less, bandpasses.

One can see that there are many cases where the row-stacking solution is optimal as it generates
MAX bandpasses, for example, when m4 + m5 = 0, or when m2 + m3 is a multiple of B, or when
(m2 + m3)%B + (m6 + m7)%B < B (% is the modulo operation).

Additionally, since bandpasses are column independent, one may permute the three columns
arbitrarily without affecting the extracted bandpasses. It follows that we have six distinct column
permutations to run the row-stacking algorithm, and thus six solutions. Among these six solutions,
if their resultant numbers of bandpasses consist of two distinct values, which must be MAX and
MAX − 1, then the solution associated with the larger number of bandpasses must be optimal; It
is unclear whether or not at least one of these six solutions is optimal for any B ≥ 2 [3].

In fact, the unsure case is all six row-stacking solutions associated with the six column permu-
tations generate MAX − 1 bandpasses. For column permutation (1, 2, 3), since the sizes of the two
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1-bands in the third column are m2 + m3 and m6 + m7, respectively (see Figure 1), this means
that (r2 + r3)%B > 0, (r6 + r7)%B > 0, and (r2 + r3)%B + (r6 + r7)%B ≥ B. (Note that there
must be m4 + m5 > 0 too, which however is implied from other column permutations.) Likewise,
we can derive from the other five column permutations similar constraints on the ri’s, which are
summarized in Table 1.

Column permutation Sizes of two 1-bands in the third column Sizes modulo B

(1, 2, 3) m2 + m3, m6 + m7 (r2 + r3)%B, (r6 + r7)%B

(2, 1, 3) m2 + m7, m6 + m3 (r2 + r7)%B, (r6 + r3)%B

(1, 3, 2) m4 + m3, m6 + m5 (r4 + r3)%B, (r6 + r5)%B

(3, 1, 2) m4 + m5, m6 + m3 (r4 + r5)%B, (r6 + r3)%B

(2, 3, 1) m8 + m7, m6 + m5 (r8 + r7)%B, (r6 + r5)%B

(3, 2, 1) m8 + m5, m6 + m7 (r8 + r5)%B, (r6 + r7)%B

Table 1: The sizes, and modulo B, of two 1-bands in the third column of the row-stacking solutions
for the six column permutations.

In the next three sections, we investigate the above unsure case to identify the subcases where
MAX bandpasses can be achieved, and prove for the other subcases that OPT = MAX − 1,
meaning that the row-stacking solutions are already optimal. The exact algorithm essentially
returns an optimal row permutation with MAX bandpasses when the input instance falls into the
identified subcases, or otherwise returns either of the six row-stacking solutions.

3 Two extreme subcases

Lemma 2 When m2,m4,m6,m8 = 0, r3+r5 ≥ B, r5+r7 ≥ B, r7+r3 ≥ B, and r3+r5+r7 < 2B,
then OPT = MAX − 1.

Proof. Recall that mi = qiB + ri, for i = 3, 5, 7. We first show that if one of q3, q5, q7 is zero,
then OPT = MAX − 1. Without loss of generality, assume q7 = 0. From the lemma premises,
we have MAX = 2q3 + 2q5 + 3, and if there were an optimal row placement P achieving MAX

bandpasses, then there are q5 + 1, q3 + q5 + 1, q3 + 1 bandpasses in the first, second, third columns
of P, respectively.

Since the total number of rows is m3 + m5 + m7 < (q3 + q5 + 2)B, we conclude that in P
there must be some bandpasses in the first column overlap (that is, share rows) with bandpasses
in the third column; but none in the first column would overlap with two bandpasses in the third
column due to the non-existence of (1, 1, 1)-rows. Note that since m7 = r7 < B, each overlapping
region contains at most r7 rows. Equivalently, there are pairs of overlapping bandpasses, one in
the first column and one in the third column, and these overlapping regions, consisting of solely
(1, 0, 1)-rows, separate the rows of P into chunks. For every bandpass (in the first or the third
column) participating in the overlapping pairs, if a port of it belongs to a chunk, then the bandpass
is said to belong to the chunk. Because there are q3 + q5 + 1 bandpasses in the second column of
P, we conclude that there is (at least) one chunk in which the number of bandpasses in the second
column is strictly less than the total number of bandpasses in the first and the third columns.
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Recall that inside a chunk, no bandpass in the first column would overlap with any bandpass in the
third column. It follows that in this chunk strictly greater than B − r7 1’s in the second column
are not involved in any bandpasses. Nevertheless, in order to achieve MAX bandpasses, at most
(r3 + r5) − B 1’s in the second column of P can sit outside of generated bandpasses. This is a
contradiction since (r3 + r5)− B < B − r7. Such a contradiction, together with Eq. (2.2), implies
that OPT = MAX − 1.

When all q3, q5, q7 are positive, and assume to the contrary that OPT = MAX = 2q3 + 2q5 +
2q7 + 3 is achieved in a row placement P, then we examine where the topmost bandpass is in
P. Assume without loss of generality that it occurs in the first column, then the second topmost
bandpass should not occurs in the first column, for otherwise at least B 1’s would not be involved in
any generated bandpasses in P. Again assume without loss of generality that the second topmost
bandpass occurs in the second column. These two bandpasses must overlap for the same reason
above. Due to the non-existence of (1, 1, 1)-rows, the third topmost bandpass does not overlap
with the topmost bandpass. Assume there are ` (1, 0, 1)-rows in the topmost bandpass. If we
take away the B rows in the topmost bandpass from the instance, the resultant new instance
I ′ contains m′

3 = m3 (0, 1, 1)-rows, m′
5 = m5 − B + ` (1, 1, 0)-rows, and m′

7 = m7 − ` (1, 0, 1)-
rows. Apparently ` ≤ (r3 + r7)%B = r3 + r7 − B, implying that r′7 = r7 − ` ≥ B − r3 > 0,
r′5 = r5 + ` ≤ r3 + r5 + r7 −B < B, r′3 + r′5 = r3 + r5 + ` ≥ B, r′5 + r′7 = r5 + r7, r′7 + r′3 ≥ B, and
r′3 + r′5 + r′7 = r3 + r5 + r7. This new instance I ′ satisfies the premises in the lemma, with B less
rows than the original instance and again with OPT (I ′) = MAX(I ′).

It follows that if we were to apply the same reduction procedure, we will eventually end up
with an instance which satisfies the premises in the lemma and with OPT = MAX, but one of
q3, q5, q7 is zero. This is a contradiction to the fact proven in the first half. Therefore, for all
instances satisfying the premises, their optimal row placement contains only MAX−1 bandpasses,
suggesting that the row-stacking solutions are already optimal. This proves the lemma. 2

Lemma 3 When m3,m5,m7 = 0, r2 + r6 ≥ B, r4 + r6 ≥ B, r8 + r6 ≥ B, r2 + r4 + r6 < 2B,
r4+r8+r6 < 2B, r8+r2+r6 < 2B, if r2+r4+r8+2r6 < 3B or q2, q4, q8 = 0, then OPT = MAX−1.

Proof. Recall that mi = qiB + ri, for i = 2, 4, 8, 6. From the lemma premises and Eq. (2.1), we
have MAX = q2 + q4 + q8 +3q6 +3, and if there were an optimal row placement P achieving MAX

bandpasses, then there are q8 + q6 + 1, q4 + q6 + 1, q2 + q6 + 1 bandpasses in the first, second, third
columns of P, respectively.

Since (0, 0, 1)-rows are not involved in any bandpasses formed in the first and the second
columns, these bandpasses must overlap at least (q8 + q6 + 1 + q4 + q6 + 1)B − (m4 + m6 + m8) =
q6B + 2B − r4 − r6 − r8 rows. These rows have 1 in both the first and the second column, and
thus must be (1, 1, 1)-rows. If one of these (1, 1, 1)-rows is involved in a bandpass generated in
the third column, that is, there are three bandpasses, one from each column, overlapping at a
(1, 1, 1)-row, then there are B consecutive (1, 1, 1)-rows in the optimal placement (which includes
the shared (1, 1, 1)-row). Removing these B consecutive (1, 1, 1)-rows, on one hand we obtain a
reduced instance I ′ for which all the premises hold except that q6 decreases by 1; on the other hand,
we obtain a row placement for I ′ achieving MAX(I ′) = MAX − 3 bandpasses. It follows that by
repeatedly reducing the instances whenever possible, we may assume without loss of generality that
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none of the q6B +2B− r4− r6− r8 (1, 1, 1)-rows is involved in any bandpasses in the third column.
Consequently, the maximum possible number of bandpasses in the third column becomes⌊

m2 + m6 − (q6B + 2B − r4 − r6 − r8)
B

⌋
= q2 +

⌊
r2 + r4 + r8 + 2r6 − 2B

B

⌋
.

Therefore, if r2 + r4 + r8 + 2r6 < 3B, this maximum possible number is q2 < q2 + q6 + 1, a
contradiction.

Note that r2 + r4 + r8 + 2r6 < 4B. Therefore, if q2, q4, q8 = 0, this maximum possible number
is 1 ≤ q6 + 1 and the equality holds only when q6 = 0. In such a case, the bandpass in the third
column may overlap with at most one of the bandpass in the first column and the bandpass in
the second column, a contradiction to the fact that these three bandpasses must pairwise overlap.
Hence, for all instances satisfying the premises, their optimal row placement contains only MAX−1
bandpasses. This proves the lemma. 2

4 When r6 = 0

We separate into two disjoint cases according to whether or not q6 = 0. One can verify that
since r6 = 0, Table 1 reduces to the following Table 2. Furthermore, m2 + r3 > B if and only if
m2 + r7 > B, m4 + r3 > B if and only if m4 + r5 > B, and m8 + r5 > B if and only if m8 + r7 > B.

Column permutations Sizes of two 1-bands modulo B

(1, 2, 3) (r2 + r3)%B, r7

(2, 1, 3) (r2 + r7)%B, r3

(1, 3, 2) (r4 + r3)%B, r5

(3, 1, 2) (r4 + r5)%B, r3

(2, 3, 1) (r8 + r7)%B, r5

(3, 2, 1) (r8 + r5)%B, r7

Table 2: The sizes modulo B of the two 1-bands in the third column in the row-stacking solutions
when r6 = 0.

4.1 When q6 = 0

We consider a few subcases. In the first subcase (Case 1.1), m2 + r3 > B. It follows that m2 >

B − r3 > 0. We stack in order m2 − (B − r3) (0, 0, 1)-rows, then all (1, 0, 1)-rows, all (1, 0, 0)-rows,
all (1, 1, 0)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, and lastly the other B− r3 (0, 0, 1)-rows. In the
resultant row permutation (see Figure 2(a)), all 1’s in each of the first two columns are consecutive,
and the first one of the two 1-bands in the third column has size (q3 + 1)B. It is therefore an
optimal solution. Symmetrically, if m4 + r3 > B or m8 + r5 > B, we are also able to obtain an
optimal row permutation achieving MAX bandpasses. Therefore, in the sequel we assume that
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row type quantity
(0, 0, 1) B − r3

(0, 1, 1) m3

(0, 1, 0) m4

(1, 1, 0) m5

(1, 0, 0) m8

(1, 0, 1) m7

(0, 0, 1) m2 − (B − r3)

(a) Case 1.1

row type quantity
(1, 0, 1) m7 − (B − r5 − r8)
(0, 0, 1) r2

(0, 1, 1) m3

(0, 1, 0) r4

(1, 1, 0) m5

(1, 0, 0) r8

(1, 0, 1) B − r5 − r8

(b) Case 1.2

row type quantity
(0, 0, 1) r2

(0, 1, 1) B − r2

(1, 1, 0) m5 − (B − r2 − r3 − r4)
(1, 0, 0) r8

(1, 0, 1) m7

(0, 1, 1) m3 − (B − r2)
(0, 1, 0) r4

(1, 1, 0) B − r2 − r3 − r4

(c) Case 1.4

row type quantity
(0, 0, 1) r2

(0, 1, 1) B − r2

(0, 1, 0) r4 − (B − r2 − r3)
(1, 1, 0) m5

(1, 0, 0) r8

(1, 0, 1) m7

(0, 1, 1) m3 − (B − r2)
(0, 1, 0) B − r2 − r3

(d) Case 1.4

Figure 2: The optimal row placements when m6 = 0.

q2, q4, q8 = 0, replacing m2,m4,m8 by r2, r4, r8 respectively, and that r2 + r3 < B, r4 + r3 < B, and
r8 + r5 < B (implying r2 + r7 < B, r4 + r5 < B, and r8 + r7 < B).

From r5 + r7 + r8 ≥ B we conclude that r7 ≥ B − r5 − r8 > 0. If r2 + r3 + r5 + r7 + r8 ≥ 2B

(Case 1.2), we stack in order B − r5 − r8 (1, 0, 1)-rows, then all (1, 0, 0)-rows, all (1, 1, 0)-rows, all
(0, 1, 0)-rows, all (0, 1, 1)-rows, all (0, 0, 1)-rows, and lastly the other m7−(B−r5−r8) (1, 0, 1)-rows.
In the resultant row permutation (see Figure 2(b)), the second one of the two 1-bands in the first
column has size (q5 + 1)B, all 1’s in the second column are consecutive, and in the third column,
the size of the first one of the two 1-bands is (q3 +q7−1)B +(r2 +r3 +r5 +r7 +r8) ≥ (q3 +q7 +1)B,
thus achieving the maximum possible number of bandpasses. We conclude this row permutation is
optimal. Symmetrically, if r2 + r3 + r5 + r7 + r4 ≥ 2B or r4 + r3 + r5 + r7 + r8 ≥ 2B, we are also
able to obtain an optimal row permutation achieving MAX bandpasses.

Next, if r2 + r4 + r8 + r3 + r5 + r7 < 2B (Case 1.3), we convert all (0, 0, 1)-rows to (0, 1, 1)-rows,
all (0, 1, 0)-rows to (1, 1, 0)-rows, and all (1, 0, 0)-rows to (1, 0, 1)-rows, by adding 1’s. This reduces
the original instance I into a new instance I ′ such that OPT (I) ≤ OPT (I ′). By Lemma 2, we
have OPT (I ′) = MAX(I ′)− 1 = 2(q3 + q5 + q7) + 2 = MAX(I)− 1 ≤ OPT (I), we conclude that
OPT (I) = MAX(I)− 1, indicating that all the six row-stacking solutions are already optimal.

If r2+r4+r8+r3+r5+r7 ≥ 2B and q3 > 0 (Case 1.4), we check whether or not r2+r3+r4 < B. If
so, we stack in order B−r2−r3−r4 (1, 1, 0)-rows, then all (0, 1, 0)-rows, m3−(B−r2) (0, 1, 1)-rows,
all (1, 0, 1)-rows, all (1, 0, 0)-rows, the other m5 − (B − r2 − r3 − r4) (1, 1, 0)-rows, the other B − r2
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(0, 1, 1)-rows, and lastly all (0, 0, 1)-rows. The resultant row permutation is shown in Figure 2(c).
If r2 + r3 + r4 ≥ B, that is, r4 ≥ B − r2 − r3, we stack in order B − r2 − r3 (0, 1, 0)-rows,
then m3 − (B − r2) (0, 1, 1)-rows, all (1, 0, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, the other
m4 − (B − r2 − r3) (0, 1, 0)-rows, the other B − r2 (0, 1, 1)-rows, and lastly all (0, 0, 1)-rows. The
resultant row permutation is shown in Figure 2(d). In both row permutations, the size of the
second one of the two 1-bands in the second column is a multiple of B, and the size of the first one
of the two 1-bands in the third column is B. Since all 1’s in the first column of Figure 2(d) are
consecutive, it is optimal; For Figure 2(c), the size of the first one of the two 1-bands in the first
column is (q5 + q7− 1)B + r2 + r4 + r8 + r3 + r5 + r7 ≥ (q5 + q7 +1)B, thus achieving the maximum
possible number of bandpasses. Symmetrically, if q5 > 0 or q7 > 0, we are also able to obtain an
optimal row permutation achieving MAX bandpasses.

If q3, q5, q7 = 0 (Case 1.5, and replacing m3,m5,m7 by r3, r5, r7 respectively), then MAX =
1+1+1 = 3. If there were one bandpass in each of the three columns, from r2+r3+r5+r7+r8 < 2B,
r2+r3+r5+r7+r4 < 2B, and r4+r3+r5+r7+r8 < 2B we conclude that these three bandpasses must
pairwise overlap. However, such an overlapping scenario would imply the existence of (1, 1, 1)-rows,
a contradiction. Therefore, in this case, OPT = MAX − 1, and all the six row-stacking solutions
are already optimal.

4.2 When q6 > 0

Since the number of (1, 1, 1)-rows is a multiple of B, we only need to consider the scenarios (Case 1.3
and Case 1.5) in the last section for q6 = 0 where OPT = MAX−1. In particular, in these scenarios
we have q2, q4, q8 = 0 (and replacing m2,m4,m8 by r2, r4, r8 respectively), r2+r4+r3+r5+r7 < 2B,
r2 + r8 + r3 + r5 + r7 < 2B, and r4 + r8 + r3 + r5 + r7 < 2B (implying r2 + r3 < B, r2 + r7 < B,
r4 + r3 < B, r4 + r5 < B, r8 + r5 < B, and r2 + r7 < B).

When r4 = 0 (Case 2.1), we stack in order all (1, 0, 0)-rows, then all (1, 0, 1)-rows, m6 − r7

(1, 1, 1)-rows, all (1, 1, 0)-rows, the other r7 (1, 1, 1)-rows, all (0, 1, 1)-rows, and lastly all (0, 0, 1)-
rows. In the resultant row permutation (see Figure 3(a)), all 1’s in the first two columns are
consecutive respectively, and the size of second one of the two 1-bands in the third column is
(q6 + q7)B. It is therefore an optimal solution. Symmetrically, when r2 = 0 or r8 = 0, we are also
able to obtain an optimal row permutation achieving MAX bandpasses.

When m3 ≥ r8 (Case 2.2), we stack in order all (0, 0, 1)-rows, then m3−r8 (0, 1, 1)-rows, r7 +r8

(1, 1, 1)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, r8 (0, 1, 1)-rows, m6 − (r7 + r8) (1, 1, 1)-rows, all
(1, 0, 1)-rows, and lastly all (1, 0, 0)-rows. In the resultant row permutation (see Figure 3(b)), there
are two 1-bands in the first column, of which the first has size q6B; the second column has only one
1-band; and the first one of the two 1-bands in the third column has size (q6 + q7)B. It is therefore
an optimal solution. Symmetrically, if m5 ≥ r2 or m7 ≥ r4, we are able to achieve an optimal row
permutation.

In the remaining case, we have q3, q5, q7 = 0 (and replacing m3,m5,m7 by r3, r5, r7 respectively),
r3 < r8, r5 < r2, and r7 < r4. If r3+r5+r7 ≥ B (Case 2.3, that is, r5 ≥ B−r3−r7 ≥ B−r8−r7 > 0),
we stack in order all (1, 0, 1)-rows, the m6 − r7 (1, 1, 1)-rows, all (0, 1, 0)-rows, m5 − (B − r3 − r7)
(1, 1, 0)-rows, all (1, 0, 0)-rows, the other B − r3 − r7 (1, 1, 0)-rows, the other r7 (1, 1, 1)-rows, all
(0, 1, 1)-rows, and lastly all (0, 0, 1)-rows. In the resultant row permutation (see Figure 3(c)), there
are two 1-bands in each column, of which (the second, the first, and the second, respectively) one
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row type quantity
(0, 0, 1) r2

(0, 1, 1) m3

(1, 1, 1) r7

(1, 1, 0) m5

(1, 1, 1) m6 − r7

(1, 0, 1) m7

(1, 0, 0) r8

(a) Case 2.1

row type quantity
(1, 0, 0) r8

(1, 0, 1) m7

(1, 1, 1) m6 − (r7 + r8)
(0, 1, 1) r8

(0, 1, 0) r4

(1, 1, 0) m5

(1, 1, 1) r7 + r8

(0, 1, 1) m3 − r8

(0, 0, 1) r2

(b) Case 2.2

row type quantity
(0, 0, 1) r2

(0, 1, 1) r3

(1, 1, 1) r7

(1, 1, 0) B − r3 − r7

(1, 0, 0) r8

(1, 1, 0) r5 − (B − r3 − r7)
(0, 1, 0) r4

(1, 1, 1) m6 − r7

(1, 0, 1) r7

(c) Case 2.3

Figure 3: The optimal row placements when m6 = q6B > 0.

has size of a multiple of B. It is therefore an optimal solution.

If r3 +r5 +r7 < B (Case 2.4), we convert all (0, 1, 1)-rows, all (1, 1, 0)-rows, and all (1, 0, 1)-rows
into (1, 1, 1)-rows by adding 1’s. This reduces the original instance I into a new instance I ′ such
that OPT (I) ≤ OPT (I ′). By Lemma 3 (the second case), we have OPT (I ′) = MAX(I ′) − 1 =
3q6 + 2 = MAX(I)− 1 ≤ OPT (I), we conclude that OPT (I) = MAX(I)− 1, indicating that all
the six row-stacking solutions are already optimal.

5 When r6 > 0

This case is a bit more complex than the case of r6 = 0. We separate into two disjoint subcases
according to whether there is a zero in {r2, r4, r8}.

5.1 When r2 · r4 · r8 = 0

In this case, there is at least one zero among r2, r4, r8. We assume without loss of generality that
r4 = 0, and thus Table 1 reduces to the following Table 3.

Column permutations Sizes of two 1-bands modulo B

(1, 2, 3) (r2 + r3)%B, (r6 + r7)%B

(2, 1, 3) (r2 + r7)%B, (r6 + r3)%B

(1, 3, 2) r3, (r6 + r5)%B

(3, 1, 2) r5, (r6 + r3)%B

(2, 3, 1) (r8 + r7)%B, (r6 + r5)%B

(3, 2, 1) (r8 + r5)%B, (r6 + r7)%B

Table 3: The sizes modulo B of the two 1-bands in the third column in the row-stacking solutions
when r6 > 0 and r4 = 0.
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5.1.1 When q4 = 0

In this case, there are no (0, 1, 0)-rows to be considered. If m2 + r7 > B (Case 3.1), then m2 >

B − r7 > 0. We stack in order B − r7 (0, 0, 1)-rows, then all (1, 0, 1)-rows, all (1, 0, 0)-rows, all
(1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows, and lastly the other m2 − (B − r7) (0, 0, 1)-rows.
In the resultant row permutation (see Figure 4(a)), all 1’s in each of the first two columns are
consecutive, and the second one of the two 1-bands in the third column has size (q7 + 1)B. It is
therefore an optimal solution. Symmetrically, if m8 +r7 > B, we are also able to obtain an optimal
row permutation achieving MAX bandpasses. Therefore, in the sequel we assume that q2, q8 = 0,
replacing m2,m8 by r2, r8 respectively, and that r2 + r7 < B and r8 + r7 < B.

row type quantity
(0, 0, 1) m2 − (B − r7)
(0, 1, 1) m3

(1, 1, 1) m6

(1, 1, 0) m5

(1, 0, 0) m8

(1, 0, 1) m7

(0, 0, 1) B − r7

(a) Case 3.1

row type quantity
(1, 0, 0) r8

(1, 1, 0) m5

(1, 1, 1) m6 − (B − r3)
(1, 0, 1) m7

(1, 1, 1) B − r3

(0, 1, 1) m3

(0, 0, 1) r2

(b) Case 3.2

row type quantity
(0, 0, 1) B − r3 − r6

(0, 1, 1) m3

(1, 1, 1) r6

(1, 1, 0) m5

(1, 0, 0) r8

(1, 0, 1) m7

(0, 0, 1) r2 − (B − r3 − r6)

(c) Case 3.3

row type quantity
(1, 0, 1) B − r2 − r3 − r6

(0, 0, 1) r2

(0, 1, 1) m3

(1, 1, 1) r6

(1, 1, 0) m5

(1, 0, 0) r8

(1, 0, 1) m7 − (B − r2 − r3 − r6)

(d) Case 3.4

Figure 4: The optimal row placements when r6 > 0 and m4 = 0.

If m6 + r3 > B (Case 3.2), then m6 > B − r3 > 0. We stack in order all (0, 0, 1)-rows, then
all (0, 1, 1)-rows, B − r3 (1, 1, 1)-rows, all (1, 0, 1)-rows, the other m6 − (B − r3) (1, 1, 1)-rows, all
(1, 1, 0)-rows, and lastly all (1, 0, 0)-rows. In the resultant row permutation (see Figure 4(b)), all
1’s in the first and the third columns are consecutive, and the second one of the two 1-bands in the
second column has size (q3+1)B. It is therefore an optimal solution. Symmetrically, if m6+r5 > B

or m6+r7 > B, we are also able to obtain an optimal row permutation achieving MAX bandpasses.

In the sequel, from m6+r3 < B we conclude that q6 = 0 (replacing m6 by r6). If r2+r3+r6 ≥ B

(Case 3.3), or equivalently r2 ≥ B−r3−r6 > 0, we stack in order r2−(B−r3−r6) (0, 0, 1)-rows, then
all (1, 0, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows, and lastly the
other B − r3 − r6 (0, 0, 1)-rows. In the resultant row permutation (see Figure 4(c)), all 1’s in the
first two columns are consecutive, and the first one of the two 1-bands in the third column has size
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(q3+1)B. Therefore, the row permutation is an optimal solution. Symmetrically, if r5+r6+r8 ≥ B,
we are also able to obtain an optimal row permutation achieving MAX bandpasses.

In the sequel, we have r2+r3+r6 < B, and thus r7 ≥ B−r2−r3−r6 > 0 since r2+r3+r6+r7 ≥ B.
When r2 +r3 +r5 +2r6 +r7 +r8 ≥ 2B (Case 3.4), we stack in order m7− (B−r2−r3−r6) (1, 0, 1)-
rows, then all (1, 0, 0)-rows, all (1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows, all (0, 0, 1)-rows,
and the other B−r2−r3−r6 (1, 0, 1)-rows. In the resultant row permutation (see Figure 4(d)), the
second one of the two 1-bands in the first column has size (q5 +q7−1)B+r2 +r3 +r5 +2r6 +r7 +r8,
achieving q5 + q7 + 1 bandpasses. all 1’s in the second column are consecutive, and the first one of
the two 1-bands in the third column has size (q3 +1)B. It is therefore an optimal row permutation
generating MAX bandpasses.

In the remaining scenario (Case 3.5), we have q6, q2, q8 = 0, r6+r7 < B, r2+r7 < B, r8+r7 < B,
and r2 + r3 + r5 + 2r6 + r7 + r8 < 2B (which implies r2 + r3 + r6 < B and r5 + r6 + r8 < B).
Hence MAX = 2(q3 + q5 + q7) + 3. we convert all (0, 0, 1)-rows into (0, 1, 1)-rows, and convert
all (1, 0, 0)-rows into (1, 1, 0)-rows, by adding 1’s. This reduces the original instance I into a new
instance I ′ such that OPT (I) ≤ OPT (I ′) and MAX(I) = MAX(I ′).

We prove that OPT (I ′) = MAX(I ′) − 1. Note that in instance I ′, q′3 = q3, r′3 = r2 + r3,
q′5 = q5, r′5 = r8 + r5, q′7 = q7, r′7 = r7, and r′6 = r6. Assume to the contrary that the optimal
row placement P ′ generates MAX(I ′) bandpasses. We want to construct another new instance I ′′,
which is initialized to be I ′, and one of its row placement P ′′, which is initialized to be P ′. For each
of the r′6 = r6 (1, 1, 1)-rows, if it participates in no bandpasses in P ′ across all three columns, then
we remove it from I ′′ as well as P ′′; if it participates in at most two bandpasses in P ′, assuming
without loss of generality from the first two columns, then we replace it with a (1, 1, 0)-row in I ′′

as well as in P ′′; if it participates in three bandpasses in P ′, assuming without loss of generality
that among these three the top one is from the first column and the middle one is from the second
column (and thus the bottom one is from the third column), then we accumulate all the (1, 1, 1)-
rows that participate in these three bandpasses in P ′, and replace them with exactly the same
number of (1, 1, 0)-rows and the same number of (0, 1, 1)-rows in I ′′, as well as in P ′′ in which these
(1, 1, 0)-rows are stacked on right top of these (0, 1, 1)-rows. At the end, the resultant new instance
I ′′ has only three types of rows: m′′

3 (0, 1, 1)-rows with m′
3 ≤ m′′

3 ≤ m′
3 + r′6, m′′

5 (1, 1, 0)-rows with
m′

5 ≤ m′′
5 ≤ m′

5 + r′6, and m′′
7 (1, 0, 1)-rows with m′

7 ≤ m′′
7 ≤ m′

7 + r′6. Furthermore, from the above
row-replacing scheme, m′′

3+m′′
5+m′′

7 ≤ m′
3+m′

5+2r′6+m′
7. It follows that instance I ′′ satisfies all the

premises in Lemma 2, and consequently OPT (I ′′) = MAX(I ′′)− 1 = 2(q3 + q5 + q7) + 2. However,
the construction of row placement P ′′ does not decrease the number of bandpasses generated in P ′.
That is, P ′′ is a solution to I ′′ with MAX(I ′′) = 2(q3 + q5 + q7) + 3 bandpasses, a contradiction.
This contradiction proves that OPT (I ′) = MAX(I ′)− 1. Therefore, OPT (I) = MAX(I)− 1 too,
and all its six row-stacking solutions are optimal.

5.1.2 When q4 > 0

In this case, m4 = q4B > 0. Similarly as before, we only need to consider Case 3.5 for q4 = 0 in the
last section, where q6, q2, q8 = 0, r6+r7 < B, r2+r7 < B, r8+r7 < B, and r2+r3+r5+2r6+r7+r8 <

2B. It follows that MAX = 2(q3 + q5 + q7) + q4 + 3.

When r3+r6+r7 ≥ B (Case 4.1), we may simply ignore all the r2 (0, 0, 1)-rows (by stacking them
last), to stack in order B−r5 (0, 1, 0)-rows, then all (1, 1, 0)-rows, all (1, 0, 0)-rows, all (1, 0, 1)-rows,
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all (1, 1, 1)-rows, all (0, 1, 1)-rows, the other m4− (B−r5) (0, 1, 0)-rows, and lastly all (0, 0, 1)-rows.
In the resultant row permutation (see Figure 5(a)), all 1’s in the first column are consecutive, the
second one of the two 1-bands in the second column has size (q5 + 1)B, and the second one of
the two 1-bands in the third column has size (q3 + q7)B + r3 + r6 + r7, achieving the maximum
possible number of bandpasses. It is therefore an optimal row permutation. Symmetrically, if
r5 + r6 + r7 ≥ B or r5 + r7 + r8 ≥ B, we are also able to obtain an optimal row permutation
achieving MAX bandpasses. In the sequel, we have r3 + r6 + r7 < B, r5 + r6 + r7 < B, and
r5 + r7 + r8 < B.

row type quantity
(0, 0, 1) r2

(0, 1, 0) m4 − (B − r5)
(0, 1, 1) m3

(1, 1, 1) r6

(1, 0, 1) m7

(1, 0, 0) r8

(1, 1, 0) m5

(0, 1, 0) B − r5

(a) Case 4.1

row type quantity
(0, 1, 0) m4 − (2B − r2 − r3 − r5 − r6 − r7)
(1, 1, 1) r6 − (B − r5 − r7 − r8)
(0, 1, 1) m3

(0, 0, 1) r2

(1, 1, 1) 2B − (r2 + r3 + r5 + r6 + 2r7 + r8)
(1, 0, 1) m7

(1, 0, 0) r8

(1, 1, 0) m5

(1, 1, 1) r2 + r3 + r6 + r7 −B

(0, 1, 0) 2B − r2 − r3 − r5 − r6 − r7

(c) Case 4.3

row type quantity
(0, 1, 0) m4 − (r7 + r8)
(1, 1, 1) r6 − (B − r5 − r7 − r8)
(0, 1, 1) m3

(0, 0, 1) r2

(1, 0, 1) m7

(1, 0, 0) r8

(1, 1, 0) m5

(1, 1, 1) B − r5 − r7 − r8

(0, 1, 0) r7 + r8

(b) Case 4.2

row type quantity
(0, 1, 0) m4 − (2B − r2 − r3 − r5 − r6 − r7)
(1, 1, 1) r6 − (B − r5 − r7 − r8)
(0, 1, 1) m3 − (r2 + r3 + r5 + r6 + 2r7 + r8 −B)
(0, 0, 1) r2

(1, 0, 1) m7

(1, 0, 0) r8

(1, 1, 0) m5

(1, 1, 1) B − r5 − r7 − r8

(0, 1, 1) r2 + r3 + r5 + r6 + 2r7 + r8 −B

(0, 1, 0) 2B − r2 − r3 − r5 − r6 − r7

(d) Case 4.4

Figure 5: The optimal row placements when r6 > 0 and m4 = q4B > 0.

Since r5+r6+r7+r8 ≥ B, we have r6 ≥ B−r5−r7−r8 > 0. When r2+r3+r5+r6+2r7+r8 ≥ 2B

(Case 4.2), we stack in order r7+r8 (0, 1, 0)-rows, then B−r5−r7−r8 (1, 1, 1)-rows, all (1, 1, 0)-rows,
all (1, 0, 0)-rows, all (1, 0, 1)-rows, all (0, 0, 1)-rows, all (0, 1, 1)-rows, the other r6−(B−r5−r7−r8)
(1, 1, 1)-rows, and lastly the other m4 − (r7 + r8) (0, 1, 0)-rows. In the resultant row permutation
(see Figure 5(b)), the second one of the two 1-bands in the first column has size (q5 + q7 +1)B, the
second one of two 1-bands in the second column has size (q5 + 1)B, and the first one of the two
1-bands in the third column has size (q3 + q7 − 1)B + r2 + r3 + r5 + r6 + 2r7 + r8, achieving the
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maximum possible number of bandpasses. It is therefore an optimal solution of MAX bandpasses.

When r2 + r3 + r5 + r6 + 2r7 + r8 < 2B, we swap some (0, 1, 0)-rows on the top with the same
number of (1, 1, 1)-rows from the bottom. This number is 2B− (r2 + r3 + r5 + r6 + 2r7 + r8). That
is, if r2 + 2r3 + 2r5 + 2r6 + 2r7 + r8 ≥ 3B (Case 4.3, we stack in order 2B − r2 − r3 − r5 − r6 − r7

(0, 1, 0)-rows, then r2 + r3 + r6 + r7−B (1, 1, 1)-rows, all (1, 1, 0)-rows, all (1, 0, 0)-rows, all (1, 0, 1)-
rows, 2B − (r2 + r3 + r5 + r6 + 2r7 + r8) (1, 1, 1)-rows, all (0, 0, 1)-rows, all (0, 1, 1)-rows, the other
r6−(B−r5−r7−r8) (1, 1, 1)-rows, and lastly the other m4−(2B−r2−r3−r5−r6−r7) (0, 1, 0)-rows.
In the resultant row permutation (see Figure 5(c)), the second one of the two 1-bands in the first
column has size (q5 + q7 + 1)B, the first and the third of the three 1-bands in the second column
have size (q3 + q4)B + (r2 + 2r3 + 2r5 + 2r6 + 2r7 + r8 − 3B) and (q5 + 1)B respectively, achieving
together the maximum possible number of bandpasses, and the first one of the two 1-bands in the
third column has size (q3 + q7 + 1)B. It is therefore an optimal row permutation generating MAX

bandpasses.

If r2+2r3+2r5+2r6+2r7+r8 < 3B but one of {q3, q5, q7} is positive, say q3 > 0 (Case 4.4), then
instead of using (1, 1, 1)-rows in Figure 5(c), we use (0, 1, 1)-rows to adjust for bandpasses. That is,
we stack in order 2B−r2−r3−r5−r6−r7 (0, 1, 0)-rows, then r2+r3+r5+r6+2r7+r8−B (0, 1, 1)-rows,
B − r5 − r7 − r8 (1, 1, 1)-rows, all (1, 1, 0)-rows, all (1, 0, 0)-rows, all (1, 0, 1)-rows, all (0, 0, 1)-rows,
the other r6−(B−r5−r7−r8) (1, 1, 1)-rows, the other m3−(r2+r3+r5+r6+2r7+r8−B) (0, 1, 1)-
rows, and lastly the other m4 − (2B − r2 − r3 − r5 − r6 − r7) (0, 1, 0)-rows. In this row placement
(see Figure 5(d)), the second one of the two 1-bands in the first column has size (q5 + q7 + 1)B,
the second one of the two 1-bands in the second column has size (q5 + 2)B, and the first one of the
two 1-bands in the third column has size (q3 + q7)B. Therefore, the row permutation is an optimal
solution of MAX bandpasses.

In the remaining scenario (Case 4.5), that is, q2, q3, q5, q6, q7, q8 = 0 (and replace m3,m5,m7

by r3, r5, r7 respectively), r3 + r6 + r7 < B, r5 + r6 + r7 < B, r2 + r3 + r5 + 2r6 + r7 + r8 < 2B,
r2 + r3 + r5 + r6 + 2r7 + r8 < 2B (these last two imply that r2 + r3 + r6 < B, r2 + r3 + r7 < B,
r8 + r5 + r6 < B, and r8 + r5 + r7 < B), r2 +2r3 +2r5 +2r6 +2r7 + r8 < 3B, and m4 = q4B > 0, we
have MAX = 1+(q4 +1)+1 = q4 +3. If there were an optimal row placement P achieving MAX

bandpasses, then we conclude that the only 1-band in the first column and the only 1-band in the
third column must overlap with at least 2B− (r2 + r3 + r5 + r6 + r7 + r8) > 0 rows, since no (0, 1, 0)
is used for forming these two bandpasses. Furthermore, these overlapping rows are either (1, 0, 1)
or (1, 1, 1), and none of them should be used for forming bandpasses in the second column in this
placement P, due to r3 + r6 + r7 < B and r5 + r6 + r7 < B. This implies a total number of rows
≥ (q4+1)B+2B−(r2+r3+r5+r6+r7+r8)+r2+r8, or equivalently r2+2r3+2r5+2r6+2r7+r8 ≥ 3B,
a contradiction. That is, for this last scenario, OPT = MAX − 1 and thus all the six row-stacking
solutions are optimal.

5.2 When r2 · r4 · r8 6= 0

In this case, none of r2, r4, r8 is zero. We distinguish the following two subcases according to
whether there is a zero in {r3, r5, r7}.
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5.2.1 When r3 · r5 · r7 = 0

Assume without loss of generality that r5 = 0. One can verify that Table 1 reduces to the following
Table 4. We further separate into two disjoint subcases according to whether q5 = 0.

Column permutations Sizes of two 1-bands modulo B

(1, 2, 3) (r2 + r3)%B, (r6 + r7)%B

(2, 1, 3) (r2 + r7)%B, (r6 + r3)%B

(1, 3, 2) (r4 + r3)%B, r6

(3, 1, 2) r4, (r6 + r3)%B

(2, 3, 1) (r8 + r7)%B, r6

(3, 2, 1) r8, (r6 + r7)%B

Table 4: The sizes modulo B of the two 1-bands in the third column in the row-stacking solutions
when r6 · r2 · r4 · r8 6= 0 and r5 = 0.

5.1.2.1: When q5 = 0.

If m3 + r2 > B (Case 5.1), we stack in order all (1, 0, 0)-rows, then all (1, 0, 1)-rows, all (1, 1, 1)-
rows, m3 − (B − r2) (0, 1, 1)-rows, all (0, 1, 0)-rows, the other B − r2 (0, 1, 1)-rows, and lastly all
(0, 0, 1)-rows. In the resultant row permutation (see Figure 6(a)), all 1’s in the first two columns are
consecutive respectively, and the first one of the two 1-bands in the third column has size (q2 +1)B.
It is therefore an optimal solution. Symmetrically, if m3 + r4 > B or m3 + r6 > B or m7 + r2 > B

or m7 + r8 > B or m7 + r6 > B, we are also able to obtain an optimal row permutation achieving
MAX bandpasses. So in the sequel, we have q3, q7 = 0, thus replacing m3,m7 by r3, r7 respectively,
r3 + rj < B for j = 2, 4, 6, and r7 + rj < B for j = 2, 8, 6.

When r3 + r6 + r7 ≥ B (Case 5.2), from r7 + r6 < B we have r3 ≥ B − r6 − r7 > 0. We
stack in order all (1, 0, 0)-rows, then all (1, 0, 1)-rows, all (1, 1, 1)-rows, B− r6− r7 (0, 1, 1)-rows, all
(0, 1, 0)-rows, the other r3− (B− r6− r7) (0, 1, 1)-rows, and lastly all (0, 0, 1)-rows. In the resultant
row permutation (see Figure 6(b)), all 1’s in the first two columns are consecutive respectively, and
the second one of the two 1-bands in the third column has size (q6 +1)B. It is therefore an optimal
solution. In the sequel we have r3 + r6 + r7 < B.

When r2+r3+r6+r7+r8 ≥ 2B (Case 5.3), we have r2+r3+r6 > B since r7+r8 < B, and thus
r6 > B − r2 − r3 > 0. We stack in order all (1, 0, 0)-rows, then all (1, 0, 1)-rows, m6 − (B − r2 − r3)
(1, 1, 1)-rows, all (0, 1, 0)-rows, the other B − r2 − r3 (1, 1, 1)-rows, all (0, 1, 1)-rows, and lastly all
(0, 0, 1)-rows. In the resultant row permutation (see Figure 6(c)), the second one of the two 1-bands
in the first column has size (q6 + q8− 1)B + r2 + r3 + r6 + r7 + r8, achieving the maximum possible
q6 + q8 + 1 bandpasses, all 1’s in the second column are consecutive, and the first one of the two
1-bands in the third column has size (q2 + 1)B. It is therefore an optimal solution. Symmetrically,
if r4 + r3 + r6 + r7 + r8 ≥ 2B or r2 + r3 + r6 + r7 + r4 ≥ 2B, we are also able to obtain an optimal
row permutation achieving MAX bandpasses.

Suppose next r2+r3+r6+r7+r8 < 2B, r2+r3+r6+r7+r4 < 2B, and r4+r3+r6+r7+r8 < 2B.
When r2 + r4 + r8 + 2(r3 + r6 + r7) ≥ 3B and q2 > 0 (Case 5.4, or q4 > 0 or q8 > 0, which can
be analogously discussed), we stack in order 2B − r3 − r4 − r6 − r7 (0, 0, 1)-rows, then all (1, 0, 1)-
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row type quantity
(0, 0, 1) m2

(0, 1, 1) B − r2

(0, 1, 0) m4

(0, 1, 1) m3 − (B − r2)
(1, 1, 1) m6

(1, 0, 1) m7

(1, 0, 0) m8

(a) Case 5.1

row type quantity
(0, 0, 1) m2

(0, 1, 1) r3 − (B − r6 − r7)
(0, 1, 0) m4

(0, 1, 1) B − r6 − r7

(1, 1, 1) m6

(1, 0, 1) r7

(1, 0, 0) m8

(b) Case 5.2

row type quantity
(0, 0, 1) m2

(0, 1, 1) r3

(1, 1, 1) B − r2 − r3

(0, 1, 0) m4

(1, 1, 1) m6 − (B − r2 − r3)
(1, 0, 1) r7

(1, 0, 0) m8

(c) Case 5.3

row type quantity
(0, 0, 1) m2 − (2B − r3 − r4 − r6 − r7)
(0, 1, 1) r3

(1, 1, 1) m6 −B + r7 + r8

(0, 1, 0) m4

(1, 1, 1) 2B − r3 − r4 − r6 − r7 − r8

(1, 0, 0) m8

(1, 1, 1) r3 + r4 + r6 −B

(1, 0, 1) r7

(0, 0, 1) 2B − r3 − r4 − r6 − r7

(d) Case 5.4

Figure 6: The optimal row placements when r6 · r2 · r4 · r8 6= 0 and m5 = 0.

rows, r3 + r4 + r6 −B (1, 1, 1)-rows, all (1, 0, 0)-rows, 2B − r3 − r4 − r6 − r7 − r8 (1, 1, 1)-rows, all
(0, 1, 0)-rows, the other m6 − (r3 + r4 + r6 −B)− (2B − r3 − r4 − r6 − r7 − r8) = m6 −B + r7 + r8

(1, 1, 1)-rows, all (0, 1, 1)-rows, and lastly the other m2 − (2B − r3 − r4 − r6 − r7) (0, 0, 1)-rows.
In the resultant row permutation (see Figure 6(d)), the second one of the two 1-bands in the
first column has size (q8 + 1)B, the first one of the two 1-bands in the second column has size
(q4 + q6 + 1)B, and the first and the third of the three 1-bands in the third column have size
(q2 + q6 − 3)B + r2 + r4 + r8 + 2(r3 + r6 + r7) and B respectively, thus together achieving the
maximum possible q2 + q6 + 1 bandpasses. It is therefore an optimal solution.

When r2+r4+r8+2(r3+r6+r7) < 3B or when r2+r4+r8+2(r3+r6+r7) ≥ 3B but q2, q4, q8 = 0
(Case 5.5), we convert all (0, 1, 1)-rows and all (1, 0, 1)-rows into (1, 1, 1)-rows by adding 1’s. Since
r3+r6+r7 < B, r2+r3+r6+r7+r8 < 2B, r4+r3+r6+r7+r8 < 2B, and r4+r3+r6+r7+r2 < 2B,
this reduces the instance I into a new instance I ′, which satisfies the premises of Lemma 3. Since
OPT (I) ≤ OPT (I ′) = MAX(I ′)− 1 = MAX(I)− 1, we have OPT (I) = MAX(I)− 1, and thus
all six row-stacking solutions to the original instance I are optimal.

5.1.2.2: When q5 > 0.

We only need to consider Case 5.5 for q5 = 0 in the last section, where q3, q7 = 0, r3 + r6 + r7 < B,
r2 + r3 + r6 + r7 + r8 < 2B, r4 + r3 + r6 + r7 + r8 < 2B, and r4 + r3 + r6 + r7 + r2 < 2B (Case
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6.1). From r6 + r7 + r8 ≥ B, we conclude that r8 > r3. We stack in order r3 (1, 0, 0)-rows, then
m5 − (r3 + r6) (1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows, all (0, 0, 1)-rows, all (1, 0, 1)-rows,
the other m8 − r3 (1, 0, 0)-rows, the other r3 + r6 (1, 1, 0)-rows, and lastly all (0, 1, 0)-rows. In the
resultant row placement (see Figure 7), the second one of the two 1-bands in the first column has
size (q5 + q6)B, the second one of the two 1-bands in the second column has size (q5 + q6)B, and
all 1’s in the third column are consecutive. It is therefore an optimal solution.

row type in order quantity
(0, 1, 0) m4

(1, 1, 0) r3 + r6

(1, 0, 0) m8 − r3

(1, 0, 1) r7

(0, 0, 1) m2

(0, 1, 1) r3

(1, 1, 1) m6

(1, 1, 0) m5 − (r3 + r6)
(1, 0, 0) r3

Figure 7: The optimal row placements when r6 · r2 · r4 · r8 6= 0 and m5 = q5B > 0.

5.2.2 When r3 · r5 · r7 6= 0

That is, for all i = 2, 3, . . . , 8, ri > 0. We separate two scenarios according to whether q6 = 0.

5.2.2.1: When q6 = 0.

In this section, we replace m6 by r6. Consider first when r5+r6 > B, that is, m5 ≥ r5 > B−r6 > 0.
If m8 + r7 ≥ B (Case 7.1), then we stack in order m8 − (B − r7) (1, 0, 0)-rows, then m5 − (B − r6)
(1, 1, 0)-rows, all (0, 1, 0)-rows, the other B − r6 (1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows,
all (0, 0, 1)-rows, all (1, 0, 1)-rows, and lastly the other B − r7 (1, 0, 0)-rows. In the resultant row
permutation (see Figure 8(a)), the first and the second of the three 1-bands in the first column
have size q7B and B respectively, and all 1’s in the second and the third columns are consecutive,
respectively. It is therefore an optimal solution. Symmetrically, if m2 + r7 ≥ B or m2 + r3 ≥ B or
m4 + r3 ≥ B, we are also able to achieve an optimal row placement with MAX bandpasses. In the
sequel we deal with the remaining case where q2, q4, q8 = 0 (thus replacing m2,m4,m8 by r2, r4, r8

respectively), and r8 + r7 < B, r2 + r7 < B, r2 + r3 < B, r4 + r3 < B.

From r5 + r6 > B, r8 + r7 < B, and (r5 + r6)%B + (r7 + r8)%B ≥ B, we conclude that 2B ≤
r5+r6+r7+r8 < 3B and thus B < r6+r7+r8 < 2B. It follows that m5 ≥ r5 ≥ 2B−r6−r7−r8 > 0
and r6 > B − r7 − r8 > 0. If m3 ≥ r8 (Case 7.2), then we stack in order all (0, 0, 1)-rows, then
m3 − r8 (0, 1, 1)-rows, r6 − (B − r7 − r8) (1, 1, 1)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, the other
r8 (0, 1, 1)-rows, the other B − r7 − r8 (1, 1, 1)-rows, all (1, 0, 1)-rows, and lastly all (1, 0, 0)-rows.
In the resultant row permutation (see Figure 8(b)), the first one of the two 1-bands in the first
column has size (q7 +1)B, all 1’s in the second column are consecutive, and the first one of the two
1-bands in the third column has size (q7 + 1)B. It is therefore an optimal solution. Symmetrically,
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if m7 ≥ r4, we are also able to obtain an optimal row permutation achieving MAX bandpasses.
So in the sequel we further assume that q3, q7 = 0 (thus replacing m3,m7 by r3, r7 respectively),
r3 < r8, and r7 < r4.

row type quantity
(1, 0, 0) B − r7

(1, 0, 1) m7

(0, 0, 1) m2

(0, 1, 1) m3

(1, 1, 1) r6

(1, 1, 0) B − r6

(0, 1, 0) m4

(1, 1, 0) m5 − (B − r6)
(1, 0, 0) m8 − (B − r7)

(a) Case 7.1

row type quantity
(1, 0, 0) r8

(1, 0, 1) m7

(1, 1, 1) B − r7 − r8

(0, 1, 1) r8

(0, 1, 0) r4

(1, 1, 0) m5

(1, 1, 1) r6 − (B − r7 − r8)
(0, 1, 1) m3 − r8

(0, 0, 1) r2

(b) Case 7.2

row type quantity
(1, 0, 0) r8

(1, 0, 1) r7

(1, 1, 1) B − r3 − r7

(0, 1, 1) r3

(0, 1, 0) r4

(0, 0, 1) r2

(1, 1, 1) r6 − (B − r3 − r7)
(1, 1, 0) r5

(c) Case 7.3

row type quantity
(1, 0, 0) r8

(1, 0, 1) r7

(1, 1, 1) r6 − (B − r2 − r3)
(1, 1, 0) r5

(0, 1, 0) r4

(1, 1, 1) B − r2 − r3

(0, 1, 1) r3

(0, 0, 1) r2

(d) Case 7.4

row type quantity
(1, 0, 0) r8

(1, 1, 0) m5 − (B − r6 − r7)
(0, 1, 0) r4 − r7

(0, 1, 1) r3

(0, 0, 1) r2

(1, 0, 1) r7

(1, 1, 1) r6

(1, 1, 0) B − r6 − r7

(0, 1, 0) r7

(e) Case 7.6

Figure 8: The optimal row placements when Π8
i=2ri 6= 0, q6 = 0, and r5 + r6 > B.

Symmetric to the above discussion, if r7 + r6 > B, we may further assume that r8 + r5 < B,
r4+r5 < B, q5 = 0 (thus replacing m5 by r5), and r5 < r2, since otherwise we are able to analogously
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obtain an optimal row permutation achieving MAX bandpasses. Next, if r3 + r5 + r7 + r6 ≥ 2B

(Case 7.3), then we conclude that r3 + r7 + r6 > B, r5 + r6 + r7 + r8 ≥ 2B − r3 + r8 > 2B,
r3 + r4 + r5 + r6 ≥ 2B − r7 + r4 > 2B, and r2 + r3 + r6 + r7 ≥ 2B − r5 + r2 > 2B. Therefore,
MAX = 2 + 2 + 2 = 6. It also follows that r6 > B − r3 − r7 > B − r8 − r7 > 0. We stack in
order all (1, 1, 0)-rows, then r6 − (B − r3 − r7) (1, 1, 1)-rows, all (0, 0, 1)-rows, all (0, 1, 0)-rows, all
(0, 1, 1)-rows, the other B − r3 − r7 (1, 1, 1)-rows, all (1, 0, 1)-rows, and lastly all (1, 0, 0)-rows. In
the resultant row permutation (see Figure 8(c)), the first one of the two 1-bands in the first column
has size B + r8− r3 > B and the second one has size r3 + r5 + r6 + r7−B > B, thus achieving two
bandpasses, the first one of the two 1-bands in the second column has size B + r4 − r7 > B, thus
achieving one bandpass, and the first one of the two 1-bands in the third column has size B. It is
therefore an optimal solution generating MAX = 6 bandpasses.

In the sequel we have r3 +r5 +r7 +r6 < 2B. From r2 +r3 < B and r2 +r3 +r6 > B we conclude
that r6 > B − r2 − r3 > 0. Hence, if r2 + r3 + r5 + r7 + r6 + r8 ≥ 3B (Case 7.4), we stack in order
all (0, 0, 1)-rows, then all (0, 1, 1)-rows, B− r2− r3 (1, 1, 1)-rows, all (0, 1, 0)-rows, all (1, 1, 0)-rows,
the other r6 − (B − r2 − r3) (1, 1, 1)-rows, all (1, 0, 1)-rows, and lastly all (1, 0, 0)-rows. In the
resultant row permutation (see Figure 8(d)), the first one of the two 1-bands in the first column
has size r2 + r3 + r5 + r6 + r7 + r8 − B ≥ 2B, all the 1’s in the second column are consecutive,
and the second one of the two 1-bands in the third column has size B. It is therefore an optimal
solution generating MAX = 6 bandpasses. Symmetrically, if r2 + r3 + r5 + r6 + r7 + r4 ≥ 3B

or r4 + r3 + r5 + r6 + r7 + r8 ≥ 3B, we are also able to achieve an optimal row placement with
MAX = 6 bandpasses.

In the sequel (Case 7.5), we have q2, q4, q8, q3, q5, q7 = 0, r8 + r7 < B, r2 + r7 < B, r8 + r5 < B,
r4 + r5 < B, r2 + r3 < B, r4 + r3 < B, r7 < r4, r3 < r8, r5 < r2, r3 + r5 + r7 + r6 < 2B,
r2 +r3 +r5 +r7 +r6 +r8 < 3B, r4 +r3 +r5 +r7 +r6 +r2 < 3B, and r8 +r3 +r5 +r7 +r6 +r4 < 3B.
We convert all (0, 1, 1)-, (1, 1, 0)-, and (1, 0, 1)-rows into (1, 1, 1)-rows by adding 1’s, to reduce to
a new instance I ′. Clearly, OPT (I) ≤ OPT (I ′). Instance I ′ contains only four types of rows,
with r′i = ri for i = 2, 4, 8 and r′6 = r3 + r5 + r7 + r6 − B. It therefore satisfies the premises
described in Lemma 3, and thus OPT (I ′) = MAX(I ′) − 1 = MAX(I) − 1. This shows that
OPT (I) = MAX(I)− 1, and therefore all six row-stacking solutions are all optimal.

If r7+r6 < B (Case 7.6), then we have B < r5+r6+r7 < 2B and thus m5 ≥ r5 > B−r6−r7 > 0.
Recall that we have r7 < r4. We stack in order r7 (0, 1, 0)-rows, then B − r6 − r7 (1, 1, 0)-rows, all
(1, 1, 1)-rows, all (1, 0, 1)-rows, all (0, 0, 1)-rows, all (0, 1, 1)-rows, the other r4−r7 (0, 1, 0)-rows, the
other m5−(B−r6−r7) (1, 1, 0)-rows, and lastly all (1, 0, 0)-rows. In the resultant row permutation
(see Figure 8(e)), the second one of the two 1-bands in the first column has size B, the second one
of the two 1-bands in the second column has size B too, and all the 1’s in the third column are
consecutive. It is therefore an optimal solution. This finishes up the discussion for the case when
r5 + r6 > B.

It the rest of this section, we consider when r5 + r6 < B. In fact, the above discussion tells that
we only need to consider when ri + r6 < B for all i = 3, 5, 7. It follows that Table 1 reduces to the
following Table 5. Apparently, if r2 + r3 > B, then r2 + r3 + r7 + r6 ≥ 2B and thus r2 + r7 > B;
For the same reason, r2 + r7 > B implies r2 + r3 > B; and analogously, r4 + r3 > B if and only if
r4 + r5 > B, and r8 + r7 > B if and only if r8 + r5 > B.

Consider first when m2 + r3 > B, which implies m2 + r7 > B from the last paragraph. If
m7 + r8 > B (Case 7.7), then we stack in order all (1, 0, 0)-rows, then B − r8 (1, 0, 1)-rows,
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Column permutations Sizes of two 1-bands modulo B

(1, 2, 3) (r2 + r3)%B, r7 + r6

(2, 1, 3) (r2 + r7)%B, r3 + r6

(1, 3, 2) (r4 + r3)%B, r5 + r6

(3, 1, 2) (r4 + r5)%B, r3 + r6

(2, 3, 1) (r8 + r7)%B, r5 + r6

(3, 2, 1) (r8 + r5)%B, r7 + r6

Table 5: The sizes modulo B of the two 1-bands in the third column in the row-stacking solutions
when Π8

i=2ri 6= 0, q6 = 0, and ri + r6 < B for i = 3, 5, 7.

m2 − (B − r3) (0, 0, 1)-rows, the other m7 − (B − r8) (1, 0, 1)-rows, all (1, 1, 1)-rows, all (1, 1, 0)-
rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, and lastly the other B − r3 (0, 0, 1)-rows. In the resultant
row permutation (see Figure 9(a)), the second one of the two 1-bands in the first column has size
(q8 + 1)B, all 1’s in the second column are consecutive, and the first one of the two 1-bands in the
third column has size (q3 +1)B. It is therefore an optimal solution. Symmetrically, if m3 + r4 > B,
we are also able to achieve an optimal row placement with MAX bandpasses. In the sequel, we
have q3, q7 = 0 (thus replacing m3,m7 by r3, r7 respectively), r8 + r7 < B, and r4 + r3 < B (and
consequently r8 + r5 < B, r4 + r5 < B).

If q5 > 0 (Case 7.8), and assuming r4 ≥ r8 (the opposite case can be analogously discussed),
we have m5 > B − r8 and stack in order m2 − (B − r3) (0, 0, 1)-rows, then all (1, 0, 1)-rows, all
(1, 1, 1)-rows, m5 − (B − r8) (1, 1, 0)-rows, m4 − r8 (0, 1, 0)-rows, all (0, 1, 1)-rows, the other B − r3

(0, 0, 1)-rows, all (1, 0, 0)-rows, the other B− r8 (1, 1, 0)-rows, and lastly the other r8 (0, 1, 0)-rows.
In the resultant row permutation (see Figure 9(b)), the first one of the two 1-bands in the first
column has size (q8 + 1)B, the first one of the two 1-bands in the second column has size B, and
the first one of the two 1-bands in the third column has size B. It is therefore an optimal solution.
In the following we have q5 = 0, and replace m5 by r5.

Next, when r5 + r6 + r7 ≥ B (Case 7.9), we stack in order all (1, 0, 0)-rows, then m2 − (B − r3)
(0, 0, 1)-rows, all (1, 0, 1)-rows, all (1, 1, 1)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows,
and lastly the other B − r3 (0, 0, 1)-rows. In the resultant row permutation (see Figure 9(c)), the
first column achieves 1 + q8 bandpasses, all 1’s in the second column are consecutive, and the first
one of the two 1-bands in the third column has size B. It is therefore an optimal solution. In Case
7.9, essentially the remainder r8 (1, 0, 0)-rows are not used for forming bandpasses. Symmetrically,
if r3 + r4 + r5 ≥ B or r3 + r5 + r6 ≥ B or r5 + r7 + r8 ≥ B, we are also able to obtain an optimal
row permutation achieving MAX bandpasses. Therefore, we have in the sequel r5 + r6 + r7 < B,
r3 + r4 + r5 < B, r3 + r5 + r6 < B, and r5 + r7 + r8 < B.

Recall that we are considering the case of m2 + r3 > B, which contains two possible subcases:
r2 + r3 > B, and r2 + r3 < B but q2 > 0. When r2 + r3 > B (implying r2 + r7 > B), we have
r7 > B − r2 and r2 + r3 + r6 + r7 ≥ 2B. It follows that MAX = (q8 + 1) + (q4 + 1) + (q2 + 2).

If r3 + r4 + r6 ≥ B (Case 7.10), we stack in order all (0, 1, 0)-rows, then all (0, 1, 1)-rows,
all (1, 1, 1)-rows, r7 − (B − r2) (1, 0, 1)-rows, all (1, 1, 0)-rows, all (1, 0, 0)-rows, the other B − r2

(1, 0, 1)-rows, and lastly all (0, 0, 1)-rows. In the resultant row permutation (see Figure 9(d)), all
1’s in the first column are consecutive, the second one of the two 1-bands in the second column
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row type quantity
(0, 0, 1) B − r3

(0, 1, 1) m3

(0, 1, 0) m4

(1, 1, 0) m5

(1, 1, 1) r6

(1, 0, 1) m7 − (B − r8)
(0, 0, 1) m2 − (B − r3)
(1, 0, 1) B − r8

(1, 0, 0) m8

(a) Case 7.7

row type quantity
(0, 1, 0) r8

(1, 1, 0) B − r8

(1, 0, 0) m8

(0, 0, 1) B − r3

(0, 1, 1) r3

(0, 1, 0) m4 − r8

(1, 1, 0) m5 − (B − r8)
(1, 1, 1) r6

(1, 0, 1) r7

(0, 0, 1) m2 − (B − r3)

(b) Case 7.8

row type quantity
(0, 0, 1) B − r3

(0, 1, 1) r3

(0, 1, 0) m4

(1, 1, 0) r5

(1, 1, 1) r6

(1, 0, 1) r7

(0, 0, 1) m2 − (B − r3)
(1, 0, 0) m8

(c) Case 7.9

row type quantity
(0, 0, 1) m2

(1, 0, 1) B − r2

(1, 0, 0) m8

(1, 1, 0) r5

(1, 0, 1) r7 − (B − r2)
(1, 1, 1) r6

(0, 1, 1) r3

(0, 1, 0) m4

(d) Case 7.10

row type quantity
(0, 0, 1) B − r3

(0, 1, 1) r3

(0, 1, 0) m4

(1, 1, 1) r6

(1, 1, 0) r5

(1, 0, 0) m8

(1, 0, 1) r7

(0, 0, 1) m2 − (B − r3)

(e) Case 7.11

row type quantity
(0, 0, 1) B − r3

(0, 1, 1) r3

(0, 1, 0) m4

(1, 1, 1) r6 − (2B − r2 − r3 − r7)
(1, 1, 0) r5

(1, 0, 0) m8

(1, 0, 1) r7

(1, 1, 1) 2B − r2 − r3 − r7

(0, 0, 1) m2 − (B − r3)

(f) Case 7.12

Figure 9: The optimal row placements when Π8
i=2ri 6= 0, q6 = 0, ri + r6 < B for i = 3, 5, 7, and

m2 + r3 > B.

has size q4B + r3 + r4 + r6 ≥ (q4 + 1)B, achieving q4 + 1 bandpasses, and the first one of the
two 1-bands in the third column has size (q2 + 1)B. It is therefore an optimal solution. In Case
7.10, essentially those (1, 1, 0)-rows are not used for forming bandpasses in the second column.
Symmetrically, if r6 +r7 +r8 ≥ B, we are also able to obtain an optimal row permutation achieving
MAX bandpasses. We have in the sequel r3 + r4 + r6 < B and r6 + r7 + r8 < B.

If r2 + r3 + r7 ≥ 2B (Case 7.11), we stack in order m2− (B− r3) (0, 0, 1)-rows, then all (1, 0, 1)-
rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, all (1, 1, 1)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, and
lastly the other B − r3 (0, 0, 1)-rows. In the resultant row permutation (see Figure 9(e)), all 1’s in
the first two columns are consecutive respectively, and the first and the third of the three 1-bands
in the third column have size B and (q2− 1)B + r2 + r3 + r7 ≥ (q2 +1)B. It is therefore an optimal
solution.

When r2+r3+r7 < 2B, we conclude that r6 > 2B−r2−r3−r7 > 0. If r2+2r3+r4+r5+r6+r7 ≥
3B (Case 7.12), we stack in order m2− (B− r3) (0, 0, 1)-rows, then 2B− r2− r3− r7 (1, 1, 1)-rows,
all (1, 0, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, the other r6 − (2B − r2 − r3 − r7) (1, 1, 1)-
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rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, and lastly the other B − r3 (0, 0, 1)-rows. In the resultant
row permutation (see Figure 9(f)), all 1’s in the first column are consecutive, the second column
achieves q4 + 1 bandpasses, and the first and the third of the three 1-bands in the third column
have size B and (q2 + 1)B respectively. It is therefore an optimal solution. Symmetrically, if
r2 + r3 + r5 + r6 + 2r7 + r8 ≥ 3B, we are also able to obtain an optimal row permutation achieving
MAX bandpasses.

Next, from r2 + r3 + r6 + r7 ≥ 2B we conclude that r3 + r6 + r7 > B, and henceforth r3 >

B − r6 − r7 > 0. So when q4 > 0 (Case 7.13), we stack in order B − r5 (0, 1, 0)-rows, then
all (1, 1, 0)-rows, all (1, 0, 0)-rows, all (1, 0, 1)-rows, all (1, 1, 1)-rows, B − r6 − r7 (0, 1, 1)-rows,
the other m4 − (B − r5) (0, 1, 0)-rows, the other r3 − (B − r6 − r7) (0, 1, 1)-rows, and lastly all
(0, 0, 1)-rows. In the resultant row permutation (see Figure 10(a)), all 1’s in the first column are
consecutive, the second one of the two 1-bands in the second column has size B, and the second
one of the two 1-bands in the third column has size B too. It is therefore an optimal solution.
Symmetrically, if q8 > 0, we are also able to obtain an optimal row permutation achieving MAX

bandpasses. Therefore, we further assume that in the sequel q4, q8 = 0, and replace m4,m8 by r4, r8

respectively. It follows that MAX = 1 + 1 + (q2 + 2).

From r3 + r4 + r5 + r6 ≥ B we conclude that r5 > B − r3 − r4 − r6 > 0. So if r3 + r4 + r5 +
2r6 + r7 + r8 ≥ 2B (Case 7.14), we stack in order r5 − (B − r3 − r4 − r6) (1, 1, 0)-rows, then all
(1, 0, 0)-rows, all (1, 0, 1)-rows, all (1, 1, 1)-rows, B−r6−r7 (0, 1, 1)-rows, all (0, 1, 0)-rows, the other
B− r3− r4− r6 (1, 1, 0)-rows, the other r3− (B− r6− r7) (0, 1, 1)-rows, and lastly all (0, 0, 1)-rows.
In the resultant row permutation (see Figure 10(b)), the second one of the two 1-bands in the first
column has size at least B, achieving one bandpass, the first one of the two 1-bands in the second
column has size exactly B, and the second one of the two 1-bands in the third column has size B

too. It is therefore an optimal solution.

From r2 + r3 + r6 + r7 ≥ 2B, r5 + r6 + r7 + r8 ≥ B, and r2 + r3 + r5 + r6 + 2r7 + r8 < 3B, we
have r6 = (r2 + r3 + r6 + r7− 2B)+ (r5 + r6 + r7 + r8−B)+ (3B− r2− r3− r5− r6− 2r7− r8), and
r2 + r3 + r5 + r6 + r7 + r8 − 2B < B − r7 < r2. Hence if r2 + r4 + r8 + 2r3 + 2r5 + 2r7 + 2r6 ≥ 4B

(Case 7.15), we stack in order r2 + r3 + r5 + r6 + r7 + r8 − 2B (0, 0, 1)-rows, then all (1, 0, 1)-rows,
3B−r2−r3−r5−r6−2r7−r8 (1, 1, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, r2 +r3 +r6 +r7−2B

(1, 1, 1)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, the other r5 + r6 + r7 + r8 − B (1, 1, 1)-rows, and
lastly the other m2−(r2+r3+r5+r6+r7+r8−2B) (0, 0, 1)-rows. In the resultant row permutation
(see Figure 10(c)), the second one of the two 1-bands in the first column has size exactly B, the first
one of the two 1-bands in the second column has size at least B, achieving one bandpass, and the
first and the third of the three 1-bands in the third column have size (q2 + 1)B and B respectively.
It is therefore an optimal solution.

In the other scenario of r2+r3 > B (Case 7.16), assuming that OPT = MAX = 1+1+(q2+2),
there are one bandpass in the first column and one bandpass in the second column of the optimal
row permutation P. Since (0, 0, 1)-rows are not used in these two bandpasses, we conclude that
these two bandpasses share at least 2B−r3−r4−r5−r6−r7−r8 > r6 rows, which must contain at
least one (1, 1, 0)-row and some (1, 1, 1)-rows. Firstly, none of these shared (1, 1, 1)-rows will be used
for forming bandpasses in the third column, since otherwise we would have either r3 + r5 + r6 ≥ B

or r5 + r6 + r7 ≥ B. Secondly, as there must be q2 +2 bandpasses in the third column, and because
(0, 1, 0)- and (1, 0, 0)-rows are not used for forming any of them, the total number of rows is at least
(q2 + 2)B + (2B − r3 − r4 − r5 − r6 − r7 − r8) + r4 + r8 = (q2 + 4)B − r3 − r5 − r6 − r7, which is
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row type quantity
(0, 0, 1) m2

(0, 1, 1) r3 − (B − r6 − r7)
(0, 1, 0) m4 − (B − r5)
(0, 1, 1) B − r6 − r7

(1, 1, 1) r6

(1, 0, 1) r7

(1, 0, 0) m8

(1, 1, 0) r5

(0, 1, 0) B − r5

(a) Case 7.13

row type quantity
(0, 0, 1) m2

(0, 1, 1) r3 − (B − r6 − r7)
(1, 1, 0) B − r3 − r4 − r6

(0, 1, 0) r4

(0, 1, 1) B − r6 − r7

(1, 1, 1) r6

(1, 0, 1) r7

(1, 0, 0) r8

(1, 1, 0) r5 − (B − r3 − r4 − r6)

(b) Case 7.14

row type quantity
(0, 0, 1) m2 − (r2 + r3 + r5 + r6 + r7 + r8 − 2B)
(1, 1, 1) r5 + r6 + r7 + r8 −B

(0, 1, 1) r3

(0, 1, 0) r4

(1, 1, 1) r2 + r3 + r6 + r7 − 2B

(1, 1, 0) r5

(1, 0, 0) r8

(1, 1, 1) 3B − r2 − r3 − r5 − r6 − 2r7 − r8

(1, 0, 1) r7

(0, 0, 1) r2 + r3 + r5 + r6 + r7 + r8 − 2B

(c) Case 7.15

Figure 10: The optimal row placements when Π8
i=2ri 6= 0, q6 = 0, ri + r6 < B for i = 3, 5, 7, and

m2 + r3 > B.

strictly greater than q2B + r2 + r3 + r4 + r5 + r6 + r7 + r8, a contradiction. Such a contradiction
shows that in this last scenario, OPT = MAX − 1 and thus any of the six row-stacking solutions
is optimal.

When r2 + r3 < B (and thus r2 + r7 < B) but q2 > 0 (they together still guarantee that
m2 + r3 > B), the discussion is merged with the case where m2 + r3 < B, implying q2 = 0.
Since the above discussion for m2 + r3 > B, Cases 7.7–7.16, only misses out the situation where
r2 + r3 < B and q2 > 0, we only need to cover the merged case where r2 + r3 < B, r4 + r3 < B,
r8 + r7 < B. Furthermore, if one of {q2, q4, q8} is positive, without loss of generality q2 > 0, then
q3, q5, q7 = 0 (see Cases 7.7 and 7.8), r5 + r6 + r7 < B, r3 + r4 + r5 < B, r3 + r5 + r6 < B, and
r5 + r7 + r8 < B (see Case 7.9). Note that in this case Table 5 reduces to the following Table 6.

Consider first some of {q3, q5, q7} is positive, and thus there must be q2, q4, q8 = 0 (replacing
m2,m4,m8 by r2, r4, r8 respectively) and MAX = (q5 + q7 + 1) + (q3 + q5 + 1) + (q3 + q7 + 1).
Without loss of generality, assume q7 > 0. If r6 + r7 + r8 ≥ B (Case 7.17), we stack in order
all (1, 1, 0)-rows, then all (0, 1, 0)-rows, all (0, 1, 1)-rows, all (1, 1, 1)-rows, m7 − (B − r2) (1, 0, 1)-
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Column permutations Sizes of two 1-bands modulo B

(1, 2, 3) r2 + r3, r7 + r6

(2, 1, 3) r2 + r7, r3 + r6

(1, 3, 2) r4 + r3, r5 + r6

(3, 1, 2) r4 + r5, r3 + r6

(2, 3, 1) r8 + r7, r5 + r6

(3, 2, 1) r8 + r5, r7 + r6

Table 6: The sizes modulo B of the two 1-bands in the third column in the row-stacking solutions
when Π8

i=2ri 6= 0, q6 = 0, ri + r6 < B for i = 3, 5, 7, r2 + r3 < B, r4 + r3 < B, and r8 + r7 < B.

rows, all (1, 0, 0)-rows, the other B − r2 (1, 0, 1)-rows, and lastly all (0, 0, 1)-rows. In the resultant
row permutation (see Figure 11(a)), the first one of the two 1-bands in the first column has size
q7B + r6 + r7 + r8 ≥ (q7 + 1)B, all 1’s in the second column are consecutive, and the first one of
the two 1-bands in the third column has size B. It is therefore an optimal solution.

If r4 + r5 + r6 ≥ B (Case 7.18), we stack in order all (0, 1, 0)-rows, then all (1, 1, 0)-rows,
all (1, 1, 1)-rows, m7 − (B − r8) (1, 0, 1)-rows, all (0, 1, 1)-rows, all (0, 0, 1)-rows, the other B − r8

(1, 0, 1)-rows, and lastly all (1, 0, 0)-rows. In the resultant row permutation (see Figure 11(b)), the
first one of the two 1-bands in the first column has size B, the second one of the two 1-bands in the
second column has size q5B+r4+r5+r6 ≥ (q5+1)B, and all 1’s in the third column are consecutive.
It is therefore an optimal solution. Therefore, we assume that in the sequel r6 + r7 + r8 < B and
r4 + r5 + r6 < B.

If r2 +r6 +r7 +r8 ≥ B (Case 7.19), then from r6 +r7 +r8 < B we have r2 ≥ B−r6−r7−r8 > 0.
We stack in order B− r6− r7− r8 (0, 0, 1)-rows, then m7− (B− r8) (1, 0, 1)-rows, all (1, 1, 1)-rows,
all (1, 1, 0)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, the other r2 − (B − r6 − r7 − r8) (0, 0, 1)-rows,
and lastly all (1, 0, 0)-rows. In the resultant row permutation (see Figure 11(c)), the first one of the
two 1-bands in the first column has size B, all 1’s in the second column are consecutive, and the
second one of the two 1-bands in the third column has size q7B. It is therefore an optimal solution,
and we assume in the following that r2 + r6 + r7 + r8 < B.

It follows from r2 + r3 + r6 + r7 ≥ B that r3 > B − r2 − r6 − r7 − r8 > 0. If r2 + r3 + r4 +
r5 + 2r6 + r7 + r8 ≥ 2B (Case 7.20), we stack in order all (0, 0, 1)-rows, then B − r2 − r6 − r7 − r8

(0, 1, 1)-rows, m7 − (B − r8) (1, 0, 1)-rows, all (1, 1, 1)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, the
other m3 − (B − r2 − r6 − r7 − r8) (0, 1, 1)-rows, the other B − r8 (1, 0, 1)-rows, and lastly all
(1, 0, 0)-rows. In the resultant row permutation (see Figure 11(d)), the first one of the two 1-bands
in the first column has size B, the first one of the two 1-bands in the second column has size
(q3 + q5 − 1)B + r2 + r3 + r4 + r5 + 2r6 + r7 + r8 ≥ (q3 + q5 + 1)B, and the second one of the two
1-bands in the third column has size q7B. It is therefore an optimal solution.

For the remaining scenario (Case 7.21), we prove similarly as in Case 3.5 that OPT = MAX−1.
Assume to the contrary that the optimal row placement P generates MAX bandpasses. We want
to construct a new instance I ′, which is initialized to be the original instance (denoted as I for ease
of presentation), and one of its row placement P ′, which is initialized to be P. For each of the r6

(1, 1, 1)-rows, if it participates in no bandpasses in P across all three columns, then we remove it
from I ′ as well as P ′; if it participates in at most two bandpasses in P, assuming without loss of
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row type quantity
(0, 0, 1) r2

(1, 0, 1) B − r2

(1, 0, 0) r8

(1, 0, 1) m7 − (B − r2)
(1, 1, 1) r6

(0, 1, 1) m3

(0, 1, 0) r4

(1, 1, 0) m5

(a) Case 7.17

row type quantity
(1, 0, 0) r8

(1, 0, 1) B − r8

(0, 0, 1) r2

(0, 1, 1) m3

(1, 0, 1) m7 − (B − r8)
(1, 1, 1) r6

(1, 1, 0) m5

(0, 1, 0) r4

(b) Case 7.18

row type quantity
(1, 0, 0) r8

(1, 0, 1) B − r8

(0, 0, 1) r2 − (B − r6 − r7 − r8)
(0, 1, 1) m3

(0, 1, 0) r4

(1, 1, 0) m5

(1, 1, 1) r6

(1, 0, 1) m7 − (B − r8)
(0, 0, 1) B − r6 − r7 − r8

(c) Case 7.19

row type quantity
(1, 0, 0) r8

(1, 0, 1) B − r8

(0, 1, 1) m3 − (B − r2 − r6 − r7 − r8)
(0, 1, 0) r4

(1, 1, 0) m5

(1, 1, 1) r6

(1, 0, 1) m7 − (B − r8)
(0, 1, 1) B − r2 − r6 − r7 − r8

(0, 0, 1) r2

(d) Case 7.20

Figure 11: The optimal row placements when Π8
i=2ri 6= 0, q6 = 0, ri + r6 < B for i = 3, 5, 7,

r2 + r3 < B, r4 + r3 < B, r8 + r7 < B, and q7 > 0.

generality from the first two columns, then we replace it with a (1, 1, 0)-row in I ′ as well as in P ′; if it
participates in three bandpasses in P, assuming without loss of generality that among these three the
top one is from the second column and the middle one is from the third column, then we accumulate
all the (1, 1, 1)-rows that participate in these three bandpasses in P, and replace them with exactly
the same number of (0, 1, 1)-rows and the same number of (1, 0, 1)-rows in I ′, as well as in P ′ in which
these (0, 1, 1)-rows are stacked on right top of these (1, 0, 1)-rows. Next, we convert all (0, 0, 1)- and
(1, 0, 0)-rows to (1, 0, 1)-rows, and convert all (0, 1, 0)-rows to (1, 1, 0)-rows in I ′, by adding 1’s. At
the end, the resultant new instance I ′ has only three types of rows: m′

3 (0, 1, 1)-rows with q′3 = q3 and
r3 ≤ r′3 ≤ r3+r6 < B, m′

5 (1, 1, 0)-rows with q′5 = q5 and r5 ≤ r′5 ≤ r5+r4+r6 < B, and m′
7 (1, 0, 1)-

rows with q′7 = q7 and r7 ≤ r′7 ≤ r7 + r2 + r6 + r8 < B. Furthermore, from the above row-replacing
scheme, r′3+r′5+r′7 ≤ r2+r3+r4+r5+2r6+r7+r8 < 2B. It follows that instance I ′ satisfies all the
premises in Lemma 2, and consequently OPT (I ′) = MAX(I ′)− 1 = 2(q3 + q5 + q7) + 2. However,
the construction of row placement P ′ does not decrease the number of bandpasses generated in P.
That is, P ′ is a solution to I ′ with MAX = 2(q3 + q5 + q7) + 3 bandpasses, a contradiction. This
contradiction proves that OPT = MAX − 1, and therefore all the six row-stacking solutions are
optimal.

We consider next the case where q3, q5, q7 = 0, and we replace m3,m5,m7 by r3, r5, r7 re-
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spectively. It follows that MAX = (q8 + 1) + (q4 + 1) + (q2 + 1). Since r4 + r5 < B, we denote
x = B−r4−r5 > 0. If (r2 +r3 +r6 +r7)+(r4 +r5) ≥ 2B (Case 7.22), then r2 +r3 +r6 +r7 ≥ B+x.
When r6 ≥ x, we stack in order all (0, 0, 1)-rows, then all (0, 1, 1)-rows, r6 − x (1, 1, 1)-rows, all
(1, 0, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, the other x (1, 1, 1)-rows, and lastly all (0, 1, 0)-
rows. The resultant row permutation is shown in Figure 12(a). When r6 < x, then we conclude
from r2 + r7 < B that r3 + r6 > x, and we stack in order all (0, 0, 1)-rows, then r3 − (x − r6)
(0, 1, 1)-rows, all (1, 0, 1)-rows, all (1, 0, 0)-rows, all (1, 1, 0)-rows, all (1, 1, 1)-rows, the other x− r6

(0, 1, 1)-rows, and lastly all (0, 1, 0)-rows. The resultant row permutation is shown in Figure 12(b).
In both resultant row permutations, all 1’s in the first column are consecutive, the first one of the
two 1-bands in the second column has size (q4 + 1)B, and the second one of the two 1-bands in
the third column has size q2B + r2 + r3 + r6 + r7 − x ≥ (q2 + 1)B. They are therefore optimal.
Symmetrically, if (r5 + r6 + r7 + r8) + (r2 + r3) ≥ 2B or (r3 + r4 + r5 + r6) + (r8 + r7) ≥ 2B, we
are also able to obtain an optimal row permutation achieving MAX bandpasses. So, in the sequel
we have r2 + r3 + r4 + r5 + r6 + r7 + r8 − ri < 2B, for i = 2, 4, 8.

When q2, q4, q8 = 0 (replacing m2,m4,m8 by r2, r4, r8 respectively), if r3 + r6 + r7 ≥ B and
r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B (Case 7.23), we distinguish two scenarios. In the first scenario,
r6 + r7 + r8 ≥ B, and we stack in order all (0, 0, 1)-rows, then all (0, 1, 0)-rows, all (1, 1, 0)-rows,
all (0, 1, 1)-rows, all (1, 1, 1)-rows, all (1, 0, 1)-rows, and lastly all (1, 0, 0)-rows. In the resultant
row permutation (see Figure 12(c)), the first one of the two 1-bands in the first column has size
r6 + r7 + r8 ≥ B, thus achieving one bandpass, all 1’s in the second column are consecutive, and
the first one of the two 1-bands in the third column has size r3 + r6 + r7 ≥ B, thus achieving
one bandpass. It is therefore an optimal solution achieving MAX = 3 bandpasses. In the second
scenario, r6 +r7 +r8 < B, we have r5 ≥ B−r6−r7−r8 > 0, and we stack in order all (0, 0, 1)-rows,
then all (0, 1, 0)-rows, r5 − (B − r6 − r7 − r8) (1, 1, 0)-rows, all (0, 1, 1)-rows, all (1, 1, 1)-rows, all
(1, 0, 1)-rows, all (1, 0, 0)-rows, and lastly the other B − r6 − r7 − r8 (1, 1, 0)-rows. In the resultant
row permutation (see Figure 12(d)), the first one of the two 1-bands in the first column has size B,
the second one of the two 1-bands in the second column has size r3 +r4 +r5 +2r6 +r7 +r8−B ≥ B,
thus achieving one bandpass, and the first one of the two 1-bands in the third column have size
r3 + r6 + r7 ≥ B, thus achieving one bandpass. It is therefore an optimal solution achieving
MAX = 3 bandpasses. Symmetrically, if r3 + r6 + r5 ≥ B and r2 + r3 + r5 + 2r6 + r7 + r8 ≥ 2B,
or r5 + r6 + r7 ≥ B and r2 + r3 + r4 + r5 + 2r6 + r7 ≥ 2B, we are also able to obtain an optimal
row permutation achieving MAX = 3 bandpasses.

In the remaining scenario of q2, q4, q8 = 0 (Case 7.24), we prove by contradiction that OPT =
2 and thus all six row-stacking solutions are optimal. Suppose otherwise there is an optimal
row permutation P generating MAX = 3 bandpasses, one in each column. Recall that we have
r2 + r3 + r4 + r5 + r6 + r7 + r8 − ri < 2B, for i = 2, 4, 8. Since (0, 0, 1)-rows are not used for
forming bandpasses in the first and the second columns, these two bandpasses must share at least
2B− r3 − r4 − r5 − r6 − r7 − r8 > 0 rows, which include some (1, 1, 0)-rows and some (1, 1, 1)-rows.
It follows that these three bandpasses must be pairwise overlapping, and thus one of them uses all
the rows shared by the other two. Assume without loss of generality that the rows shared by the
two bandpasses in the first and the second columns are used by the bandpass in the third column
(the other two cases can be analogously discussed). We conclude that r5 +r6 +r7 ≥ B and the rows
shared by the two bandpasses in the first and the second columns are all (1, 1, 1)-rows. Therefore,
2B− r3− r4− r5− r6− r7− r8 ≤ r6, for otherwise there would not be sufficient (1, 1, 1)-rows. That
is, we have r5 + r6 + r7 ≥ B and r2 + r3 + r4 + r5 + 2r6 + r7 ≥ 2B, a contradiction.
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row type quantity
(0, 1, 0) m4

(1, 1, 1) x

(1, 1, 0) r5

(1, 0, 0) m8

(1, 0, 1) r7

(1, 1, 1) r6 − x

(0, 1, 1) r3

(0, 0, 1) m2

(a) Case 7.22, r6 ≥ x

row type quantity
(0, 1, 0) m4

(0, 1, 1) x− r6

(1, 1, 1) r6

(1, 1, 0) r5

(1, 0, 0) m8

(1, 0, 1) r7

(0, 1, 1) r3 − (x− r6)
(0, 0, 1) m2

(b) Case 7.22, r6 < x

row type quantity
(1, 0, 0) r8

(1, 0, 1) r7

(1, 1, 1) r6

(0, 1, 1) r3

(1, 1, 0) r5

(0, 1, 0) r4

(0, 0, 1) r2

(c) Case 7.23, r6 + r7 + r8 ≥ B

row type quantity
(1, 1, 0) B − r6 − r7 − r8

(1, 0, 0) r8

(1, 0, 1) r7

(1, 1, 1) r6

(0, 1, 1) r3

(1, 1, 0) r5 − (B − r6 − r7 − r8)
(0, 1, 0) r4

(0, 0, 1) r2

(d) Case 7.23, r6 + r7 + r8 < B

row type quantity
(0, 0, 1) m2 − (r5 + r8)
(1, 1, 1) r6 − (B − r5 − r7 − r8)
(0, 1, 1) r3

(0, 1, 0) m4

(1, 1, 0) r5

(1, 0, 0) m8

(1, 0, 1) r7

(1, 1, 1) B − r5 − r7 − r8

(0, 0, 1) r5 + r8

(e) Case 7.25

row type quantity
(0, 0, 1) m2 − (2B − r3 − r4 − r5 − r6 − r7)
(1, 1, 1) r5 + r6 + r7 + r8 −B

(0, 1, 1) r3

(0, 1, 0) m4

(1, 1, 0) r5

(1, 1, 1) 2B − r3 − r4 − 2r5 − r6 − r7 − r8

(1, 0, 0) m8

(1, 0, 1) r7

(1, 1, 1) r3 + r4 + r5 + r6 −B

(0, 0, 1) 2B − r3 − r4 − r5 − r6 − r7

(f) Case 7.26

Figure 12: The optimal row placements when Π8
i=2ri 6= 0, q6 = 0, ri + r6 < B for i = 3, 5, 7,

r2 + r3 < B, r4 + r3 < B, r8 + r7 < B, and q3, q5, q7 = 0.

When not all of q2, q4, q8 are zero, we assume without loss of generality that q2 > 0. It follows
from Case 7.9 that we only need to consider the case where r3 + r4 + r5 < B, r3 + r5 + r6 < B,
r5 + r6 + r7 < B, and r5 + r7 + r8 < B.

From r5+r7+r8 < B, we have r6 > B−r5−r7−r8 > 0. So, if r3+r4+2r5+r6+r7+r8 ≥ 2B (Case
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7.25), we stack in order r5 +r8 (0, 0, 1)-rows, then B−r5−r7−r8 (1, 1, 1)-rows, all (1, 0, 1)-rows, all
(1, 0, 0)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows, the other r6 − (B − r5 − r7 − r8)
(1, 1, 1)-rows, and lastly the other m2 − (r5 + r8) (0, 0, 1)-rows. In the resultant row permutation
(see Figure 12(e)), the second one of the two 1-bands in the first column has size (q8 +1)B, the first
one of the two 1-bands in the second column has size r3 + m4 + 2r5 + r6 + r7 + r8−B ≥ (q4 + 1)B,
and the second one of the two 1-bands in the third column has size B. It is therefore an optimal
solution. So, in the sequel we have r3 + r4 + 2r5 + r6 + r7 + r8 < 2B, from which we have
r6 ≥ 2B − r3 − r4 − 2r5 − r6 − r7 − r8 > 0.

Clearly, r6 = (r3 +r4 +r5 +r6−B)+(r5 +r6 +r7 +r8−B)+(2B−r3−r4−2r5−r6−r7−r8). If
r2 +r4 +r8 +2r3 +2r5 +2r6 +2r7 ≥ 3B (Case 7.26), then we stack in order 2B−r3−r4−r5−r6−r7

(0, 0, 1)-rows, then r3 + r4 + r5 + r6 −B (1, 1, 1)-rows, all (1, 0, 1)-rows, all (1, 0, 0)-rows, the other
2B − r3 − r4 − 2r5 − r6 − r7 − r8 (1, 1, 1)-rows, all (1, 1, 0)-rows, all (0, 1, 0)-rows, all (0, 1, 1)-rows,
the other r5 + r6 + r7 + r8−B (1, 1, 1)-rows, and lastly the other m2− (2B− r3− r4− r5− r6− r7)
(0, 0, 1)-rows. In the resultant row permutation (see Figure 12(f)), the second one of the two 1-
bands in the first column has size (q8 + 1)B, the first one of the two 1-bands in the second column
has size (q4 + 1)B, and the first and the third of the three 1-bands in the third column have size
m2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7 − 3B ≥ q2B and B respectively. It is therefore an optimal
solution achieving MAX bandpasses. So, in the sequel we consider the case of r2 + r4 + r8 + 2r3 +
2r5 + 2r6 + 2r7 < 3B.

Symmetric to the discussion of q2 > 0 in Case 7.9, if q4 > 0 or q8 > 0, then an optimal row
permutation with MAX bandpasses can be achieved when r3 +r6 +r7 ≥ B. When r3 +r6 +r7 < B

(Case 7.27), we prove by contradiction that OPT = MAX − 1 and thus all six row-stacking
solutions are optimal. Suppose otherwise there is an optimal row permutation P generating MAX

bandpasses. Since (0, 0, 1)-rows are not used for forming bandpasses in the first and the second
columns, these bandpasses must share at least 2B − r3 − r4 − r5 − r6 − r7 − r8 > r5 rows, which
are (1, 1, 0)- and (1, 1, 1)-rows. The bandpasses in the third column of P should not share any
one of these, for otherwise it implies that either r3 + r5 + r6 ≥ B, or r5 + r6 + r7 ≥ B, or
r3+r6+r7 ≥ B. Yet there are q2+1 bandpasses in the third column, which do not use those shared
rows, neither the (0, 1, 0)- or (1, 0, 0)-rows. Consequently, the total number of rows must be at least
(q2+1)B+(2B−r3−r4−r5−r6−r7−r8)+m4+m8, implying that r2+r4+r8+2r3+2r5+2r6+2r7 ≥
3B, a contradiction.

In the remaining case, we have q4, q8 = 0 and replace m4,m8 by r4, r8 respectively. We also
have r3 + r6 + r7 ≥ B since otherwise we have proven that OPT = MAX − 1 in Case 7.27. From
Case 7.23, when r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B, we are able to achieve an optimal solution
generating MAX bandpasses. When r3 + r4 + r5 + 2r6 + r7 + r8 < 2B (Case 7.28), we prove
by contradiction similarly as in Case 7.16 that OPT = MAX − 1 and thus all six row-stacking
solutions are optimal. Suppose otherwise there is an optimal row permutation P generating MAX

bandpasses. Since (0, 0, 1)-rows are not used for forming bandpasses in the first and the second
columns, these two bandpasses must share at least 2B − r3 − r4 − r5 − r6 − r7 − r8 > r6 rows,
which include at least one (1, 1, 0)-row and some (1, 1, 1)-rows. The bandpasses in the third column
of P should not share any one of these, for otherwise it implies that either r3 + r5 + r6 ≥ B or
r5+r6+r7 ≥ B. Yet there are q2+1 bandpasses in the third column, which do not use those shared
rows, neither the (0, 1, 0)- or (1, 0, 0)-rows. Consequently, the total number of rows must be at least
(q2+1)B+(2B−r3−r4−r5−r6−r7−r8)+r4+r8, implying that r2+r4+r8+2r3+2r5+2r6+2r7 ≥ 3B,



28 Li and Lin

a contradiction. This finishes the discussion of q6 = 0.

5.2.2.1: When q6 > 0.

Note that we only need to deal with those cases among Cases 7.1-7.28 for which OPT = MAX−1.
These are Cases 7.5, 7.16, 7.21, 7.24, 7.27, and 7.28. Since m6 = q6B +r6 > B, we might be able to
achieve optimal row placements with MAX bandpasses. We thus follow the same discussion route
when q6 = 0.

In Case 7.5, we have q2, q4, q8, q3, q5, q7 = 0, r8 + r7 < B, r2 + r7 < B, r8 + r5 < B, r4 + r5 < B,
r2+r3 < B, r4+r3 < B, r7 < r4, r3 < r8, r5 < r2, r3+r5+r7+r6 < 2B, r2+r3+r5+r7+r6+r8 < 3B,
r4 + r3 + r5 + r7 + r6 + r2 < 3B, and r8 + r3 + r5 + r7 + r6 + r4 < 3B. So even with q6 > 0 (Case
8.1), we still convert all (0, 1, 1)-, (1, 1, 0)-, and (1, 0, 1)-rows into (1, 1, 1)-rows by adding 1’s, to
reduce to a new instance I ′. Clearly, OPT (I) ≤ OPT (I ′). Instance I ′ contains only four types
of rows, with r′i = ri for i = 2, 4, 8 and r′6 = r3 + r5 + r7 + r6 − B. It therefore satisfies the
premises described in Lemma 3, and thus OPT (I ′) = MAX(I ′) − 1 = MAX(I) − 1. This shows
that OPT (I) = MAX(I)− 1, and therefore all six row-stacking solutions are all optimal.

In Case 7.16, we have r7 + r6 < B and r2 + r3 > B, among other constraints. It follows from
r2 + r3 + r6 + r7 ≥ 2B that r3 + r6 + r7 > B, and thus m3 ≥ r3 > B − r6 − r7 > 0. With
q6 > 0 (Case 8.2), we stack in order all (1, 0, 0)-rows, then all (1, 0, 1)-rows, B− r7 (1, 1, 1)-rows, all
(1, 1, 0)-rows, the other m6 − (B− r7) (1, 1, 1)-rows, B− r6 − r7 (0, 1, 1)-rows, all (0, 1, 0)-rows, the
other m3−(B−r6−r7) (0, 1, 1)-rows, and lastly all (0, 0, 1)-rows. In the resultant row permutation
(see Figure 13(a)), all 1’s in the first two columns are consecutive respectively, and the second and
the third of the three 1-bands in the third column have size q6B and (q7 + 1)B respectively. It is
therefore an optimal solution with MAX bandpasses.

In Case 7.21, we have q7 > 0 and r4 + r3 < B, among other constraints. With q6 > 0 (Case
8.3), we stack in order all (0, 0, 1)-rows, then m7−r4 (1, 0, 1)-rows, m6− (B−r3−r4) (1, 1, 1)-rows,
all (1, 1, 0)-rows, all (1, 0, 0)-rows, the other r4 (1, 0, 1)-rows, the other B− r3− r4 (1, 1, 1)-rows, all
(0, 1, 1)-rows, and lastly all (0, 1, 0)-rows. In the resultant row permutation (see Figure 13(b)), all
1’s in the first column are consecutive, the first one of the two 1-bands in the second column has
size (q3 + q4 + 1)B, and the first one of the two 1-bands in the third column has size (q3 + 1)B, It
is therefore an optimal solution with MAX bandpasses.

We merge the discussion of Cases 7.24, 7.27, and 7.28 by appending q6 > 0 to the end of
Case 7.22, where Cases 7.24, 7.27, and 7.28 stem from. That is, we have q3, q5, q7 = 0, r2 +
r3 + r4 + r5 + r6 + r7 + r8 − ri < 2B for i = 2, 4, 8, and now q6 > 0. It follows that MAX =
(q8 + q6 + 1) + (q4 + q6 + 1) + (q2 + q6 + 1).

If r7 ≥ r4 (Case 8.4), the row placement in Figure 13(b) for Case 8.3 is feasible and also optimal
in this case. Symmetrically, if r3 ≥ r8 or r5 ≥ r2, we are also able to achieve an optimal row
placement with MAX bandpasses. In the sequel, we consider the case in which r7 < r4, r3 < r8,
and r5 < r2.

If r3 + r6 + r7 ≥ B (Case 8.5), then r3 + r4 + r6 > B, and we stack in order all (0, 0, 1)-
rows, then all (1, 1, 0)-rows, all (1, 0, 0)-rows, all (1, 0, 1)-rows, all (1, 1, 1)-rows, all (0, 1, 1)-rows,
and lastly all (0, 1, 0)-rows. In the resultant row permutation (see Figure 13(c)), all the 1’s in
the first column are consecutive, the first one of the two 1-bands in the second column has size
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row type quantity
(0, 0, 1) m2

(0, 1, 1) m3 − (B − r6 − r7)
(0, 1, 0) m4

(0, 1, 1) B − r6 − r7

(1, 1, 1) m6 − (B − r7)
(1, 1, 0) m5

(1, 1, 1) B − r7

(1, 0, 1) m7

(1, 0, 0) m8

(a) Case 8.2

row type quantity
(0, 1, 0) m4

(0, 1, 1) m3

(1, 1, 1) B − r3 − r4

(1, 0, 1) r4

(1, 0, 0) m8

(1, 1, 0) m5

(1, 1, 1) m6 − (B − r3 − r4)
(1, 0, 1) m7 − r4

(0, 0, 1) m2

(b) Cases 8.3 and 8.4

row type quantity
(0, 1, 0) m4

(0, 1, 1) r3

(1, 1, 1) m6

(1, 0, 1) r7

(1, 0, 0) m8

(1, 1, 0) r5

(0, 0, 1) m2

(c) Case 8.5

row type in order quantity
(0, 0, 1) m2

(1, 0, 1) r7

(1, 1, 1) r3 + r6

(1, 1, 0) B − r3 − r7 − r6

(0, 1, 0) m4

(1, 1, 0) r3 + r5 + r7 + r6 −B

(1, 0, 0) m8

(1, 1, 1) m6 − (r3 + r6)
(0, 1, 1) r3

(d) Case 8.6

Figure 13: The optimal row placements when Π8
i=2ri 6= 0, q6 > 0, and ri + r6 < B for i = 3, 5, 7.

(q4 + q6)B + r3 + r4 + r6 ≥ (q4 + q6 + 1)B, and the first one of the two 1-bands in the third column
has size q6B + r3 + r6 + r7 ≥ (q6 + 1)B. It is therefore an optimal solution. Symmetrically, if
r3 + r5 + r6 ≥ B or r5 + r6 + r7 ≥ B, we are also able to achieve an optimal row placement with
MAX bandpasses. In the sequel, we consider the case in which r3 + r6 + r7 < B, r3 + r5 + r6 < B,
and r5 + r6 + r7 < B.

It follows from r3 + r6 + r7 < B that r5 > r3 + r5 + r6 + r7 − B. So, if r3 + r5 + r7 + r6 ≥ B

(Case 8.6), we stack in order all (0, 1, 1)-rows, then m6 − (r3 + r6) (1, 1, 1)-rows, all (1, 0, 0)-rows,
r3+r5+r6+r7−B (1, 1, 0)-rows, all (0, 1, 0)-rows, the other r5−(r3+r5+r6+r7−B) = B−r3−r6−r7

(1, 1, 0)-rows, the other r3 + r6 (1, 1, 1)-rows, all (1, 0, 1)-rows, and lastly all (0, 0, 1)-rows. In the
resultant row permutation (see Figure 13(d)), the first one of the two 1-bands in the first column
has size B, the second one of the two 1-bands in the second column has size q6B, and the second
one of the two 1-bands in the third column has size q6B. It is therefore an optimal solution. We
assume in the sequel r3 + r5 + r7 + r6 < B.

In the remaining scenario (Case 8.7), we convert all (0, 1, 1)-, (1, 1, 0)-, and (1, 0, 1)-rows into
(1, 1, 1)-rows by adding 1’s, to reduce to a new instance I ′. Clearly, OPT (I) ≤ OPT (I ′). Instance
I ′ contains only four types of rows, with r′i = ri for i = 2, 4, 8 and r′6 = r3 + r5 + r7 + r6. When
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q2, q4, q8 = 0 (as in Case 7.24), instance I ′ satisfies the premises described in Lemma 3, and thus
OPT (I ′) = MAX(I ′) − 1 = MAX(I) − 1. When not all of q2, q4, q8 are zero (as in Cases 7.27
and 7.28), we have r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7 < 3B from the discussion of Case 7.26.
Instance I ′ again satisfies the premises described in Lemma 3, and thus OPT (I ′) = MAX(I ′)−1 =
MAX(I) − 1. Therefore, we always have OPT (I) = MAX(I) − 1, suggesting that all six row-
stacking solutions are optimal.

6 Conclusions

Theorem 4 The three column Bandpass problem with any bandpass number B ≥ 2 can be solved
exactly in linear time.

Proof. In the last four sections we show that in most cases, the six solutions returned from the
row-stacking algorithm include an optimal one; all the exceptional cases are recognized in Sections
4 and 5, for each of which an optimal row permutation generating MAX bandpasses is constructed
in linear time, while all six row-stacking solutions generate only MAX − 1 bandpasses. 2

The algorithm solving the three column Bandpass problem has been implemented into a JAVA
program, which is available upon request.
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