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Abstract: Automatically identifying frequent composite patterns in DNA 
sequences is an important task in bioinformatics, especially when all the  
basic elements (or monad patterns) of a composite pattern are weak. In this 
paper, we compare one straightforward approach to assemble the monad 
patterns into composite patterns to two other rather complex approaches.  
Both our theoretical analysis and empirical results show that this overlooked 
straightforward method can be several orders of magnitude faster. Furthermore, 
different from the previous understandings, the empirical results show that  
the runtime superiority among the three approaches is closely related to the 
insignificance of the monad patterns. 
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1 Introduction 

Finding composite DNA patterns is an interesting topic in bioinformatics research and 
has received much attention recently (Marsan and Sagot, 2000; Eskin and Pevzner, 2002; 
Carvalho et al., 2005). Given a set of DNA sequences, a composite DNA pattern is a 
combination of two or more frequent patterns that co-occurs more than a given number of 
times in the set of sequences. Each of the individual frequent patterns is called a monad 
pattern (Eskin and Pevzner, 2002), which is required to appear frequent enough in the  
set of sequences. Finding composite patterns is computationally challenging (Eskin and 
Pevzner, 2002), typically when one or all of the involved monad patterns are weak  
(or insignificant), i.e., there are too many candidate monad patterns resulting in too many 
possible combinations. 

One solution to the composite pattern finding problem is to find out all candidate 
monad patterns and then to assemble them into composite patterns by scanning a set of 
positions behind or in front of a monad pattern for co-occurring monad patterns. Such an 
approach was first mentioned in Marsan and Sagot (2000), which is also the pioneering 
work on the composite pattern finding problem. However, Marsan and Sagot (2000) 
rejected this straightforward method based on over-estimated theoretical upper bounds of 
its runtime and space complexity. Instead, they proceeded to study a suffix tree based 
algorithm for the composite pattern finding problem, for which they found better upper 
bounds of runtime and space complexity. The suffix tree based algorithm was further 
extended by Eskin and Pevzner (2002) and Carvalho et al. (2005), to a prefix tree based 
algorithm MITRA-Count and an improved algorithm RISO based on a special suffix tree, 
respectively. 

In this paper, we study the above straightforward approach for composite pattern 
finding. We do this carefully to provide much tighter theoretical upper bounds on the 
runtime and space complexity. We will show later that, our analysed upper bound on the 
runtime turns out to be better than the suffix/prefix tree based algorithms, while the space 
complexity remains to be worse. We call our approach ECOMP, which stands for 
Efficient COMPosite pattern finding. We choose to compare the performance of ECOMP 
with MITRA-Dyad and RISO, which are the best implementations of the prefix and 
suffix tree based composite pattern finding algorithms, respectively. The experiments 
were done on both synthetic and real datasets with various parameter settings. The results 
confirmed one previous observation that ECOMP would be superior to MITRA-Dyad 
when the gaps between the monad patterns in the composite patterns are large, and also 
showed that ECOMP is superior even when the gaps are small but the involved monad 
patterns are weak. One general conclusion from our experimental results is that among 
these three algorithms, which one is superior to the others is closely related to the 
insignificancy of the involved monad patterns. Typically, when all involved monad 
patterns are insignificant, ECOMP can be up to several orders of magnitude faster than 
MITRA-Dyad and RISO. 

For simplicity, in the remaining part of the paper we will only consider the composite 
patterns consisting of two monad patterns, i.e., dyad patterns. In the next section, we will 
give more detailed definitions related to composite patterns. In Section 3, we will 
describe the algorithm ECOMP in details. We will show in Section 4 that ECOMP has a 
better theoretical runtime than the one given in Marsan and Sagot (2000). We compare 
ECOMP with MITRA-Dyad and RISO on both synthetic and real datasets and report the 
results in Section 5. Section 6 concludes the paper with some further discussions. 
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2 Preliminaries 

Genes having similar functions usually are controlled by common regulatory elements. 
Identifying such common regulatory elements can be formulated as finding frequent 
patterns for a given set of sequences. The study on such a pattern finding problem was 
started more than a decade ago and is still a hot topic in bioinformatics research. For the 
common regulatory element identification application, one starts with a set of genes that 
have similar functions to collect the upstream regions of all these genes, and then to 
search for frequent patterns that occur more than a given number of times in the collected 
sequences. 

Such a pattern finding problem is both biologically and computationally interesting 
and challenging. On one hand, unlike frequent patterns in some other fields of studies 
such as frequent itemsets in association rule mining (Agrawal and Srikant, 1994), 
frequent DNA patterns usually contain mutations in their occurrences. In this sense,  
the target patterns are more like profiles and therefore identifying them could be 
computationally very expensive (Pevzner and Sze, 2000). On the other hand, fast DNA 
pattern finding algorithms are desired for high-throughput purpose such as a phase in 
microarray data analysis. 

Most of the previous research in the literature has focused on finding so-called monad 
patterns (Eskin and Pevzner, 2002). Essentially, a monad pattern is a relatively short 
DNA string that appears (allowing a certain degree of mutations) in a given set of 
sequences more than a given number of times. With no intention to give a full survey 
here, we only name a few well known monad pattern finding algorithms: Gibbs sampling 
(Lawrence et al., 1993), MEME (Bailey and Elkan, 1995), CONSENSUS (Hertz and 
Stormo, 1999), WINNOWER (Pevzner and Sze, 2000), PROJECTION (Buhler and 
Tompa, 2002), and MULTIPROFILER (Keich and Pevzner, 2002). These monad pattern 
finding algorithms can be roughly divided into two categories based on the models 
assumed on the patterns, machine learning (or statistical) models and mismatch models. 
WINNOWER (Pevzner and Sze, 2000) and PROJECTION (Buhler and Tompa, 2002) 
are two monad pattern finding algorithms based on mismatch models. In this paper, we 
assume mismatch models too, which model each monad pattern as a contiguous string S 
and an expression of the form (l, d) – k, where l is the length of S, and S has at least k 
occurrences in the given sequences. An occurrence of pattern S is a length-l substring  
T (called an l-mer) in the given sequences that has at most d mismatches (mutations)  
with S. The requirement of “having at least k occurrences” has two different meanings, 
which may result in a slightly different way of counting the occurrences. In one meaning, 
pattern S must appear in at least k input sequences, regardless how many times it occurs 
in individual sequences; in the other meaning, pattern S must appear at least k times 
anywhere in the input sequences, that is, multiple occurrences in individual sequences are 
counted. 

The monad pattern finding algorithms do not consider the co-occurrences of two or 
more patterns, which form a composite pattern. Composite patterns are biologically 
interesting, for example, they could form a group of transcription factors that collectively 
regulate the genes. However, detecting composite patterns is more challenging than 
finding monad patterns, as one or more of the involved monad patterns may be weak  
(or insignificant), i.e., hard to be distinguished from a vast number of candidate patterns 
existing in the input sequences. 
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Marsan and Sagot are probably the first to study the composite pattern finding 
problem with mismatch models (Marsan and Sagot, 2000). Their algorithm, SMILE, uses 
a suffix tree to extract patterns. Approaches that are based on machine learning models 
include CO-BIND (Thakurta and Stormo, 2001) using Gibbs sampling and an algorithm 
by van Helden et al. (2000) measuring the statistical significance of candidate monad 
pattern pairs. MITRA-Dyad (Eskin and Pevzner, 2002) and RISO (Carvalho et al., 2005) 
are based on mismatch models and they both further develop the idea in SMILE. SMILE 
and MITRA-Count use a suffix tree and a prefix tree to search the monad pattern space, 
respectively. To find composite patterns, MITRA-Dyad connects all possible DNA 
strings separated by gaps of a range of lengths, so that the problem becomes a monad 
pattern finding problem. RISO uses a special suffix tree called factor tree to explore the 
pattern space. It extends the connecting idea of MITRA-Dyad by introducing a new data 
structure called box-links, which is to connect the DNA strings in the factor tree. It should 
be noted that the general ideas underlying MITRA-Dyad and RISO on assembling monad 
patterns into composite patterns are the same. That is, they both extract one monad 
pattern first, and then focus on a window region of this monad pattern to scan for its sister 
monad patterns that co-occur more than a given number of times. Such a general 
approach avoids extracting monad patterns from the whole set of sequences, but it may 
need to repeat the monad pattern finding many times when all basic monad patterns are 
insignificant. We will compare ECOMP with MITRA-Dyad and RISO on both synthetic 
and real datasets. 

3 The ECOMP algorithm 

In this section, we formally describe the ECOMP algorithm for finding composite 
patterns of the form (l1, d1) – [distmin, distmax] – (l2, d2) – k in a given set of N sequences 
each of length n. Such a form of composite patterns consists of two parts, the first part is 
a monad pattern of the form (l1, d1) – k and the second part is a monad pattern of the form 
(l2, d2) – k, and these two parts are separated apart by at least distmin nucleotides and at 
most distmax nucleotides. The composite patterns must have at least k occurrences in the 
input sequences. During the presentation, we will point out the similarities and the 
differences between ECOMP and MITRA-Dyad. 

3.1 ECOMP 

The ECOMP algorithm consists of three steps of operations. In the first step,  
ECOMP extracts all candidate monad patterns in the target composite patterns,  
i.e., monad patterns of forms (l1, d1) – k and (l2, d2) – k. To do this, ECOMP calls 
MITRA-Count (Eskin and Pevzner, 2002) for its efficiency. Essentially, to find (l, d) – k 
monad patterns, MITRA-Count applies an exhaustive search in the whole pattern space 
using a prefix tree and prunes away those branches that do not have a minimal support of 
k. In more details, MITRA-Count starts from an empty root node and grows the prefix 
tree in a depth-first manner by appending a nucleotide to the current branch. Each branch 
forms a prefix. As long as there are at least k l-mers in the input sequences each has at 
most d mismatches to the prefix, MITRA-Count continues to extend it, or otherwise 
switches to the next branch in a depth-first manner. At the end, a prefix of length l  
in the tree is a pattern found. Experiments by Eskin and Pevzner (2002) show that this 
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prefix tree based monad pattern finding algorithm has better runtime than several  
existing monad pattern finding methods in the literature. In the second step, for each 
monad pattern of the form (l1, d1) – k, ECOMP scans the downstream window region 
[distmin, distmax] of its every occurrence to count the occurrences of every other monad 
pattern of the form (l2, d2) – k. In the last step, ECOMP reports the found composite 
patterns, which are pairs of monad patterns having a count of occurrences greater than or 
equal to k. 

In more details, ECOMP calls MITRA-Count in its first step to find all monad 
patterns of forms (l1, d1) – k and (l2, d2) – k, each of which is accompanied with the 
starting positions of all its occurrences, ordered by increasing input sequence indices.  
In the second step, ECOMP uses the (l1, d1) – k monad patterns as query sources to 
determine the (l2, d2) – k monad patterns that are regarded as query targets. To do this, 
ECOMP builds an array of size Nn, of which the ith cell stores the list of target monad 
patterns having an occurrence starting at position i. Another array stat, whose size is 
equal to the number of target monad patterns, is also created. The jth cell in array stat is 
for the jth target monad pattern, and it has a field count that records the number of 
occurrences of the jth target monad pattern. ECOMP allocates a set RelevantTargets  
for collecting target monad patterns that co-occur with the source monad pattern  
under consideration. At each iteration, ECOMP examines one source monad pattern  
P by scanning the downstream window region [distmin, distmax] associated with every 
occurrence P  of P. Assuming P  ends at position e, for every target monad pattern Q 
that has an occurrence starting at position i, where e + distmin ≤ i ≤ e + distmax, ECOMP 
performs the following operations depending on the meaning of ‘k occurrences’ 
(assuming Q is the jth target monad pattern): 

• if the desired composite patterns are required to appear in at least k input sequences, 
then stat[j].count increases by only one per input sequence and Q is added to 
RelevantTargets at its first occurrence 

• if the desired composite patterns are required to appear in at least k times anywhere 
in the input sequences, then stat[j].count increases by one at every occurrence and Q 
is added to RelevantTargets at its first occurrence. 

After scanning for occurrences of P, if the jth target monad pattern Q is in 
RelevantTargets and stat[j].count ≥ k, then a composite pattern composed of P and Q is 
found. ECOMP proceeds to re-initialise array stat and set RelevantTargets, and moves on 
to the next iteration to examine the next source monad pattern. 

In the above description of ECOMP we assume that composite patterns are in the 
form (l1, d1) – [distmin, distmax] – (l2, d2) – k, that is, the (l2, d2) – k monad pattern follows 
the (l1, d1) – k monad pattern in the input sequences. When the physical order of these 
two parts is biologically irrelevant, e.g., composite regulatory elements are order 
independent and they function well as long as the elements are within a certain range of 
each other, either upstream or downstream, ECOMP can be easily adjusted to find them 
by simply adding another upstream query window. We remark that adding another query 
window increases the runtime of ECOMP only by a fraction, as all the target monad 
patterns have been identified. MITRA-Dyad and RISO have a different story. In order  
for MITRA-Dyad and RISO to find order-independent composite patterns, theoretically 
we may also add another upstream query window. However, since the runtime of 
MITRA-Dyad or RISO is very sensitive to (exponential in) the window size, adding a 
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new window is not really feasible for them – adding a new window is done by increasing 
the window size. The computational results presented in Section 5 confirm the above 
theoretical observations. 

3.2 Stage-MITRA 

MITRA-Count is designed for monad pattern finding and it is extended to MITRA-Dyad 
for dyad pattern finding. Essentially, MITRA-Dyad reduces the dyad pattern finding 
problem to a monad pattern finding, as detailed in the following. The target dyad  
patterns in MITRA-Dyad are in the form (l1 – [distmin, distmax] – l2, d1 + d2) – k, which are 
composite patterns consisting of two monad patterns of lengths l1 and l2, respectively, 
separated apart by at least distmin nucleotides and at most distmax nucleotides,  
allowing in total at most d1 + d2 mismatches, and occurring at least k times in the input 
sequences. Note that this form of composite patterns differs from those of the form 
(l1, d1) – [distmin, distmax] – (l2, d2) – k. In fact, the latter is a special case of the former.  
In this regard, MITRA-Dyad alters a bit the original composite pattern finding problem 
first studied in Marsan and Sagot (2000). To find (l1 – [distmin, distmax] – l2, d1 + d2) – k, 
patterns, MITRA-Dyad concatenates each l1-mer with the l2-mer that is downstream s 
nucleotides away, for every s ∈ [distmin, distmax], to form an (l1 + l2)-mer. Then  
MITRA-Dyad proceeds to find monad patterns of the form (l1 + l2, d1 + d2) – k. The worst 
case runtime complexity of MITRA-Dyad grows exponentially in the number of allowed 
mismatches (Sagot, 1998; Eskin and Pevzner, 2002). Therefore, MITRA-Dyad spends  
an exponential amount of more time than ECOMP (i.e., 1 2(3 )d dO +  (Eskin and Pevzner, 
2002) vs. 1 2(3 3 ))d dO +  for finding the desired dyad patterns. Nonetheless, when the 
source monad patterns are significant, MITRA-Dyad works well even if the target monad 
patterns are weak. 

The main difference of ECOMP compared to MITRA-Dyad is to find both parts in 
the composite patterns at the first step using independent parameters. Subsequently, 
ECOMP may choose the significant part as the source to determine its targets, 
downstream or upstream. We integrated this idea into MITRA to firstly find the  
source monad patterns using the model (l1, d1) – k, and then to proceed to find the target 
(l2, d2) – k monad patterns in the downstream window regions of the occurrences of  
each source monad pattern. This hybrid method is called Stage-MITRA. Note that  
in the composite patterns found by Stage-MITRA, there are at most d1 mismatches  
in the first part, and there are at most d2 mismatches in the second part, i.e., they  
are (l1, d1) – [distmin, distmax] – (l2, d2) – k patterns. Correspondingly, Stage-MITRA is 
expected to run faster than MITRA-Dyad. The experimental results presented in  
Section 5 confirmed our expectation by showing that Stage-MITRA is up to an order of 
magnitude faster than the original MITRA-Dyad. 

The output composite patterns by ECOMP and Stage-MITRA satisfy stricter 
constraints than the output composite patterns found by MITRA-Dyad, in that the 
numbers of mismatches in the first and the second parts are at most d1 and d2, 
respectively. We remark that SMILE and RISO are also designed for finding composite 
patterns of the form (l1, d1) – [distmin, distmax] – (l2, d2) – k, which is more reasonable than 
the form used in MITRA-Dyad. In general, the model on the composite patterns in 
MITRA-Dyad is too loosely defined, and MITRA-Dyad might return too many false 
positives when the source monad patterns are extremely strong and the target monad 
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patterns are extremely weak. Between ECOMP and Stage-MITRA, ECOMP outperforms 
Stage-MITRA in general, since ECOMP only solves two independent monad pattern 
finding problems while Stage-MITRA might need to solve a huge number of them. 
Nevertheless, in some extreme situations where the target part of the composite pattern is 
extremely insignificant and the source part is extremely strong, Stage-MITRA could 
outperform ECOMP. The explanation is that because the source pattern is so strong,  
the space of target patterns reduces dramatically due to the window constraint, and  
Stage-MITRA may benefit from this fact more than ECOMP by performing only a few 
monad pattern findings in small search spaces. 

4 Theoretical runtime analysis 

In this section, we provide the theoretical worst case runtime complexity analysis for the 
different ways of assembling monad patterns in Stage-MITRA and ECOMP. We first list 
the notations used in the analysis: 

n: Length of input sequences 
N: Number of input sequences 
V(l, d): Maximum number of l-mers at a Hamming distance of at most d from 
 another l-mer 
q: Window size, q = distmax – distmin + 1 
nx: Number of (l1, d1) – k patterns in the input sequences 

:
ixI  Number of occurrences of the ith (l1, d1) – k pattern in the input sequences 

Ax: Average number of occurrences for an (l1, d1) – k pattern in the input 
 sequences 
ny: Number of (l2, d2) – k patterns in the input sequences 
Ay: Average number of occurrences for an (l2, d2) – k pattern in the input 
 sequences 
CECOMP: Worst case runtime complexity of ECOMP in assembling monad patterns 
CStage-MITRA: Worst case runtime complexity of Stage-MITRA in assembling monad 
 patterns. 

Theorem 4.1: Given all (l1, d1) – k and (l2, d2) – k monad patterns and their occurrences  
in the input sequences. The runtime complexity of Stage-MITRA and ECOMP  
for assembling monad patterns into composite patterns satisfying the model  
(l1, d1) – [distmin, distmax] – (l2, d2) – k are 

2
Stage-MITRA 2 2( ( ))

ix
i

C O q I l d∈ ,∑ V  

and 

ECOMP 2 2( ( ))
ix

i

C O q I l d∈ ,∑ V  

respectively. 

Proof: Sagot showed that the worst case runtime complexity of MITRA-Count  
for finding (l, d) – k monad patterns is O(nN2V (l, d)) (Sagot, 1998; Eskin and  
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Pevzner, 2002). Stage-MITRA first extracts all (l1, d1) – k monad patterns. When finding 
the second part (l2, d2) – k monad patterns, it reduces to a monad pattern finding problem 
in the window region of every occurrence of an (l1, d1) – k monad pattern. For finding the 
ith (l1, d1) – k monad pattern, its runtime is 2

2 2( ( )).
ixO qI l d,V  Consequently, the overall 

complexity is  
2

Stage-MITRA 2 2( ( ))
ix

i

C O q I l d∈ , .∑ V  

In ECOMP, for every occurrence of an (l1, d1) – k monad pattern xi, its downstream 
window region is scanned. From the definition of V(l2, d2), we have 

ECOMP 2 2( ( ))
ix

i

C O q I l d∈ , .∑ V  

From 

( )22 ,
i i ix x x x xi i i

I I n A I≥ =∑ ∑ ∑  

we conclude that in the worst case CECOMP is about an order of Ax less than CStage-MITRA.  

Note that in Marsan and Sagot (2000) there is an estimated upper bound of n2N2qV (l1, d1) 
V (l2, d2) on the runtime of a naive approach, which is similar to ECOMP in spirit. A 
careful look at it reveals that such an upper bound is over-estimated. If including the 
runtime for extracting monad patterns, the runtime complexity of Stage-MITRA and 
ECOMP are 

2 2
2 2 1 1( ( ) ( ))

ixi
O q I l d nN l d, + ,∑ V V  

and 
2 2

2 2 1 1 2 2( ( ) ( ) ( ))
ixi

O q I l d nN l d nN l d, + , + ,∑ V V V  

respectively. When both parts in the composite patterns are not strong, then the runtimes 
of Stage-MITRA and ECOMP are both dominated by the time complexity for assembling 
the monads. In this case, Theorem 1 says that the runtime of ECOMP is linear in the 
window size q, the number of source monad patterns nx, and the average number of 
occurrences of source monad patterns Ax. We remark that ECOMP trades memory for 
speed, as it can be seen that the space complexity of ECOMP is Θ(nxAx + nyAy + nN), 
while that of MITRA-Count is only Θ(nN). However, since ECOMP retrieves query 
patterns one by one in a sequential way and only does random access on the storage of 
the target patterns, we can always use the stronger monad patterns as target patterns, so 
that even if the weaker patterns can only be stored in secondary memory, the access of 
secondary memory is a sequential one which is well known in computer science to  
be much faster than random access of secondary memory. If both parts are too weak  
to be stored in memory (i.e., both nxAx and nyAy are extremely large), then MITRA-Dyad 
may not work as well since in its time complexity contains the factor of 2

x xn A  
2 2

2 2 2 2 2 2( ( ) ( ) ( )).
i ix x x x xi i

q I l d qA I l d qn A l d, ≥ , = ,∑ ∑V V V  
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5 Computational experiments and discussions 

We have conducted a series of computational experiments on both simulated DNA data 
and real biological data to compare the performance of ECOMP with MITRA-Dyad 
(Eskin and Pevzner, 2002), RISO (Carvalho et al., 2005), and Stage-MITRA. As the 
experimental results in Carvalho et al. (2005) have shown that RISO improves over 
SMILE (Marsan and Sagot, 2000) by several orders of magnitude in runtime, we do not 
include SMILE in our comparison. Also, since MITRA-Dyad finds composite patterns in 
the form other than that in ECOMP, RISO, and Stage-MITRA, we will mainly compare 
ECOMP with Stage-MITRA and RISO to show the performance difference between  
the ways of assembling monad patterns into composite patterns. The computational 
results in the following show that ECOMP is up to two orders of magnitude faster  
than Stage-MITRA and RISO, and is up to three orders of magnitude faster than  
MITRA-Dyad. 

The program RISO was downloaded from the homepage of its authors  
(Carvalho et al., 2005). Due to the unavailability of MITRA-Count source code, we 
implemented the algorithm ourselves, according to the exact specification provided in 
Eskin and Pevzner (2002). In more details, the implementation of MITRA-Count uses the 
prefix tree data structure only (Eskin and Pevzner, 2002). Note that Eskin and Pevzner 
also proposed a hybrid method combining MITRA and a graph based approach 
WINNOWER (Eskin and Pevzner, 2002; Pevzner and Sze, 2000), called MITRA-Graph. 
Roughly speaking, WINNOWER is used in MITRA-Graph as a heuristic to speedup  
the monad pattern finding and eventually speedup the composite pattern finding  
because MITRA needs to find long monad patterns representing the composite patterns. 
Since the current interest is to compare two different ways of assembling monad  
patterns into composite ones, and also because MITRA-Graph has a much more complex 
implementation than MITRA-Count and according to its authors MITRA-Graph is not 
consistently faster than MITRA-count, we compared to MITRA-Count only in our 
experiments. For fair comparisons, MITRA-Dyad, Stage-MITRA and ECOMP were all 
implemented in C++ using the LEDA (Mehlhorn and Näher, 1995) library. RISO  
was implemented in C by its authors (Carvalho et al., 2005). The reported runtimes 
include the time for extracting the monad patterns. All experiments were performed on a 
Pentium IV 2.6 GHz Linux workstation with 1 GB of RAM. 

5.1 Results on simulated data 

Eskin and Pevzner defined the dyad challenge problem based on simulated data  
(Eskin and Pevzner, 2002). In this problem, sequences on an alphabet of four letters, 
mimicking DNA sequences, are randomly generated. In our experiment, we set the 
number of sequences to N = 20 and the length of each sequence to n = 600. Thirteen out 
of these 20 sequences were implanted with two (14, 4) motifs at random positions with a 
fixed distance of 20 nucleotides between them. To apply the pattern finding algorithms, 
the window was set to [20, 20], that is, the window size was only 1. Table 1 collects  
the runtimes of MITRA-Dyad for finding (14 – [20, 20] – 14, 8) – 13 patterns, and  
Stage-MITRA and ECOMP for finding (14, 4) – [20, 20] – (14, 4) – 13 patterns. It can be 
seen that the runtimes of Stage-MITRA and ECOMP are close on the challenge problem, 
and they are much less than that of MITRA-Dyad, which searches a much larger space. 
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Table 1 Running times on the Dyad Challenge problem 

 MITRA-Dyad RISO Stage-MITRA ECOMP 
Running time >5 hours 853.68 secs 492.19 secs 482.55 secs 

5.2 Results on real biological data 

We obtained one real biological dataset from Thakurta and Stormo (2001). This dataset 
consists of 11 gene sequences regulated by two binding sites URS1 and UASH. These  
11 genes were divided into three groups. Group 1 contains five genes in which the 
distance between URS1 and UASH ranges from 19 to 37. Group 2 also contains five 
genes in which the distance between URS1 and UASH ranges from 83 to 111. Group 3 
contains only one gene, for which the distance between URS1 and UASH is 336, and the 
UASH site is downstream of URS1 instead of upstream for the other genes. In these  
11 genes, UASH is observed to be much weaker than URS1. For example, in Group 1, 
UASH is a (7, 1) – 4 pattern while URS1 is a (10, 2) – 5 pattern, and Group 1 contains 
1452 and 453 monad patterns in these two models, respectively. 

5.2.1 Results on Group 1 

We followed the same experimental setup as in Eskin and Pevzner (2002), except that the 
support threshold for (10, 2) monad patterns (including URS1) was set to 4 instead of 5. 
This made the problem more challenging, as the number of (10, 2) – 4 monad patterns is 
5472 compared to only 453 (10, 2) – 5 monad patterns. The runtimes (in seconds)  
of the four algorithms MITRA-Dyad, RISO, Stage-MITRA, and ECOMP for finding all 
(7, 1) – [17, 42] – (10, 2) – 4 and (10, 2) – [17, 42] – (7, 1) – 4 dyad patterns are collected 
in Table 2, where the dyad patterns must occur in at least four genes. It can be seen  
that the speedup of ECOMP over MITRA-Dyad is three orders of magnitude, and that 
Stage-MITRA already outperforms MITRA-Dyad two orders of magnitude. 

When the dyad patterns are required to appear at least four times anywhere in the 
sequences, the runtimes increased a bit and they are summarised in Table 3. Note that in 
this case, the models became weaker. Table 3 shows again that ECOMP is orders of 
magnitude faster than MITRA-Dyad and Stage-MITRA. 

Table 2 Running times in seconds of MITRA-Dyad, RISO, Stage-MITRA and ECOMP,  
on Group 1 genes, where the dyad patterns must occur in at least four genes.  
RISO does not search backward and so only one value is reported 

Model MITRA-Dyad RISO Stage-MITRA ECOMP 
(7, 1) – [17, 42] – (10, 2) – 4 258.21 45.39 16.46 0.44 
(10, 2) – [17, 42] – (7, 1) – 4 197.04 N/A 14.09 0.44 

Table 3 Running times in seconds of MITRA-Dyad, RISO, Stage-MITRA, and ECOMP,  
on Group 1 genes, where the dyad patterns must occur at least four times anywhere in 
the sequences. The runtime of RISO is not reported since it does not accept such kind 
of parameters 

Model MITRA-Dyad Stage-MITRA ECOMP 
(7, 1) – [17, 42] – (10, 2) – 4 383.22 82.08 1.74 
(10, 2) – [17, 42] – (7, 1) – 4 392.71 120.21 1.7 
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Tables 2 and 3 also show the phenomenon that the physical order of the monad patterns 
in the composite patterns may affect the runtimes of the algorithms. For MITRA-Dyad 
and Stage-MITRA, the difference can be observed by the non-symmetric runtime 
complexities of the two directions (see also Section 2). For ECOMP, the difference is 
insignificant in these cases. However, in extreme cases, the performance of ECOMP 
might be affected by the physical orders, due to the different amounts of memory 
required during the computation. In the extreme case where one monad pattern is very 
weak while the other is very strong, ECOMP could terminate in a short amount of time if 
the proper order is picked, while it might run out of memory using the other order. In one 
experiment, we have tested ECOMP by running it to find (10, 2) – [17, 42] – (11, 4) – 5 
and (11, 4) – [17, 42] – (10, 2) – 5 models in Group 1 genes. It is known that the  
(11, 4) – 5 model is extremely weak (the number of (11, 4) – 5 monad patterns in  
Group 1 genes is 2,004,913, while that of (10, 2) – 5 is only 453). To find (11, 4)  
– [17, 42] – (10, 2) – 5 composite patterns ECOMP only needs 18 seconds. But when 
trying to find (10, 2) – [17, 42] – (11, 4) – 5 composite patterns, ECOMP did not 
terminate in one hour. The reason is that in this extreme case the weaker monad patterns 
can not be stored in main memory so that if we use the stronger monad patterns to search 
the weaker patterns, we end up with performing random access of secondary memory, as 
discussed in the previous section. We conclude that using the weaker monad patterns as 
the source patterns in ECOMP, a dramatically better runtime can be obtained. 

In the other experiments to be reported next, MITRA-Dyad and Stage-MITRA were 
run in both directions and the better runtimes were reported. This is done under the 
consideration that in practice we would not know which of the two monad patterns of 
composite patterns is the stronger one before actually generating them, and therefore it is 
in favour of MITRA-Dyad and Stage-MITRA. For ECOMP, since we generate the 
monad patterns independently, we can decide which one is stronger and which one is 
weaker and we always use the weaker monad patterns as the query sources. For RISO, 
we are only able to run it in one direction. 

5.2.2 Theoretical running time validation 

We have designed experiments to validate the theoretical runtime analysis in Theorem 1. 
We have tested the window size ranging from small values 1–6 and then three  
larger values 11, 16, 21. The runtimes of the three algorithms RISO, Stage-MITRA,  
and ECOMP are plotted in Figure 1, where we can see that ECOMP outperforms  
Stage-MITRA and RISO in all cases. The plot also shows that the runtimes of  
Stage-MITRA and ECOMP grow linearly in the window size, consistent with the 
theoretical analysis. 

Experiments have also been set up to validate the runtime of Stage-MITRA and 
ECOMP with respect to the change of nx, the number of source monad patterns. In these 
experiments, the window size was fixed at 26 and (10, 2) – 4 was the source monad 
pattern model. There were in total 5472 source monad patterns found, and the first nx of 
them were used to grow or to query the target monad patterns of the composite patterns. 
The runtimes of Stage-MITRA and ECOMP vs. nx are plotted in Figure 2. The runtimes 
agree again with the theoretical analysis, showing that both runtimes grow linearly in nx. 
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Figure 1 Runtimes of RISO, Stage-MITRA, and ECOMP vs. the window size 

 

Figure 2 Runtimes of Stage-MITRA and ECOMP vs. the number of source monad patterns nx 

 

In the third set of experiments, we tested how RISO, Stage-MITRA, and ECOMP 
respond when the average number of occurrences of the source monad patterns, Ax, 
changes. We used (l1, 1) – [17, 42] – (10, 2) – 4 as the composite pattern model, and 
tested l1 from 8 to 4. Correspondingly, Ax increased. The growth of Ax with respect  
to l1 and the speedup of ECOMP over Stage-MITRA and RISO with respect to l1 are 
plotted in Figure 3, where we can see that the speedup of ECOMP over Stage-MITRA is 
larger than the growth of Ax. The trend of the speedup of ECOMP over RISO is similar to 
the trend of ,

ix x xi
I n A= ×∑  which indicates that the runtime of RISO is also closely 

related to nx, the number of possible first monads. This confirms the theoretical 
observation that when all basic monad patterns are weak, ECOMP can be orders of 
magnitude faster than MITRA-Dyad, RISO, and Stage-MITRA. 
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Figure 3 Speedup of ECOMP over Stage-MITRA and RISO, Ax, the total number of occurrences 
of the source monad patterns ,

ixi
I∑  vs. the length of source monad patterns l1 

 

5.2.3 Results on Groups 1 and 3 

The sequence in Group 3 is different from those in Group 1 in that the distance between 
URS1 and UASH is much larger and the physical order of the two sites is reversed. It is 
known that the URS1 and UASH patterns in the gene in Group 3 are more similar to 
those occurring in genes in Group 1, than to those occurring in genes in Group 2. In fact, 
if Groups 1 and 3 are merged together, then the composite pattern in all six genes can be 
modelled as (10, 2) – [17, 352] – (8, 2) – 6, disregarding the physical order of the two 
monad patterns. In this experiment, we have to use window size 336. We applied the 
order-independent version of ECOMP and Stage-MITRA to find the composite pattern. 
The runtime of ECOMP is 726.95 seconds, while Stage-MITRA ran out of CPU resource 
(>24 hours) on the same problem. 

6 Conclusions 

In this paper, we compared two different ways of assembling monad patterns into 
composite patterns. We have provided a better theoretical analysis on the runtime of an 
overlooked straightforward approach ECOMP, and we designed experiments to compare 
its performance with several complex composite pattern finding algorithms including 
MITRA-Dyad and RISO. The experimental results on synthetic and real-life data showed 
that ECOMP was up to two orders of magnitude faster than MITRA-Dyad and RISO, 
though theoretically MITRA-Dyad and RISO could perform better when one of the 
monad patterns in the composite patterns is extremely strong. 

Besides, ECOMP also has the advantage that it can be used to extend any other 
monad pattern finding algorithm (assuming either the mismatch model or the machine 
learning model). We believe that the speed of ECOMP makes it a suitable choice for 
integration into high-throughput data analysis that requires fast composite pattern finding, 
such as to detect common transcription factors for sets of potentially co-regulated genes 
obtained by microarray cluster analysis. 
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