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ABSTRACT

Motivation: With the knowledge of large number of SNPs in human

genome and the fast development in high-throughput genotyping

technologies, identification of linked regions in linkage analysis

through allele sharing status determination will play an ever

important role, while consideration of recombination fractions

becomes unnecessary.

Results: In this study, we have developed a rule-based program that

identifies linked regions for underlined diseases using allele sharing

information among family members. Our program uses high-density

SNP genotype data and works in the face of genotyping errors. It

works on nuclear family structures with two or more siblings. The

program graphically displays allele sharing status for all members in

a pedigree and identifies regions that are potentially linked to the

underlined diseases according to user-specified inheritance mode

and penetrance. Extensive simulations based on the �2 model for

recombination show that our program identifies linked regions with

high sensitivity and accuracy. Graphical display of allele sharing

status helps to detect misspecification of inheritance mode and

penetrance, as well as mislabeling or misdiagnosis. Allele sharing

determination may represent the future direction of linkage analysis

due to its better adaptation to high-density SNP genotyping data.
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1 INTRODUCTION

The fundamental problem in linkage analysis is to identify

regions whose allele is shared by all or most affected members

in a family but by none or few unaffected family members.

In dominant inheritance situation sharing of one mutation

allele can cause disease phenotype while in recessive cases,

sharing of two disease alleles in that region is necessary for

affected status. Traditional linkage analyses were usually based

on sparse microsatellite markers when recombination fraction

between markers has to be considered, and analysis tools

designed for analyzing microsatellite genotype data may not

work optimally with high-density SNP genotype data. With the

rapid advances in high-throughput genotyping technologies,

programs for accurate determination of allele sharing in

families will play an ever important role for linkage analysis.

This should allow extraction of full inheritance information and

accurate determination of the shared regions among family

members. Consideration of recombination fraction is no longer

necessary for this type of genotyping data.
Existing software tools for linkage analysis are all probabi-

listic, where recombinant rates are estimated in a way to

maximize the likelihood of the observed data (Abecasis et al.,

2002; Gudbjartsson et al., 2000; Kruglyak et al., 1995; Lander

and Green, 1987). The well-known software tools in this regard

include GeneHunter (Kruglyak et al., 1995), LINKAGE

(Lathrop et al., 1984), Allegro (Gudbjartsson et al., 2000) and

Merlin (Abecasis et al., 2002), etc. with different performance

and efficiencies. The traditional linkage analysis method is

limited either by their ability dealing with large amount of

markers such as the ones using Elston–Steward algorithm

(Elston and Stewart, 1971) or by the size of the families, such as

the ones using the Lander–Green algorithm (Lander and

Green, 1987), although tremendous improvement has been

applied to them through modifications such as in Merlin

(Abecasis et al., 2002) and Allegro (Gudbjartsson et al., 2000).
Leykin et al. (2005) and Sellick et al. (2004) demonstrated

that high-density SNP genotype data, such as those from

microarrays, can be used for large-scale and cost-effective

linkage analysis. The underlying principle is that there will be

sufficient number of informative markers between any two

recombination points, and thus the allele sharing status among

the family members can be unambiguously determined. This

renders consideration of recombination fraction between

markers unnecessary and demands highly efficient programs

for allele sharing determination that work on a large number of

markers. Accurate determination of allele sharing among

family members is not restrained by inheritance mode assump-

tion and it makes further applications much easier.
To approach this goal, we have developed an efficient, rule-

based program that can accurately determine the haplotype
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allele sharing status for individuals in a family and thus identify

the potential mutation regions. Our rule-based algorithm

greatly reduces computational intensity, even in the face of

large dataset such as high-density SNP genotyping. It

graphically displays the allele sharing status among family

members, and provides a way for other downstream applica-

tions. The key component of the program is a rule-based

haplotype inference algorithm that assigns haplotypes to the

smallest nuclear family in a top-down fashion, which could

either be a trio or a parent and a child, and determines

haplotypes of other family members in a sequential order. The

program uses minimum number of breakpoints to explain the

genotype data. Parental haplotype phases are revised as more

people are added as long as the revision reduces the total

number of breakpoints and still explains the genotype data. An

error correction step was added after all the revision. It is worth

noting that many haplotype inference algorithms and programs

have been developed (Chung and Gusfield, 2003; Gusfield,

2001; Halperin and Eskin, 2004; Qian and Beckmann, 2002;

Zhang et al., 2005). However, our program is the first to

emphasize on correctly inferring allele sharing status (rather

than haplotype phase) and on identifying linked regions for

affected families.
Extensive simulations on Affymetrix Human Mapping 50K/

250K GeneChips show that our program can always correctly

detect allele sharing status and mutation regions with accuracy,

based on user-specified inheritance mode and parameters on

penetrance and phenocopy.

2 METHODS

2.1 The dynamic programming algorithm

Our program first finds the nuclear family on top of the family tree,

which is either a trio consisting of parents and a child or a parent and a

child, and assigns haplotype phase to each individual without

generating any breakpoints. So the program works with missing

parental data. In the test pedigree as shown in Figure 1, the first

smallest nuclear family consists of F, M, and one of their children, C1.

The program goes through the smallest nuclear families in a breadth-

first-search (BFS) fashion. For each such smallest nuclear family, our

program employs a dynamic programming algorithm to assign the

haplotypes, under the partial assignment if any, via using a minimum

number of breakpoints.

Note that after assigning haplotypes to the parents and the first child,

some (informative) sites in F, M and C1 become unswappable (when

not all three of them are heterozygous), while some others remain to be

swappable (when all three are heterozygous). The program proceeds to

consider the next smallest nuclear family, which in the test pedigree

consists of F, M and child C2, so on and so forth until all family

members are gone through.

For the nuclear family of F, M and C2, the algorithm allocates 4 one-

dimensional tables DP00, DP01, DP10 and DP11, where DP pq[i] records

the minimum number of breakpoints necessary from site i on to the end

of the chromosome, when child C2 inherits the p haplotype of F at site i

and the q haplotype of M at site i for p¼ 0, 1 and q¼ 0, 1. In the case

that such an inheritance is impossible, DP pq[i] is set to a large value

‘MAX’. Therefore, the least value among DP00[0], DP01[0], DP10[0] and

DP11[0] is the minimum number of breakpoints needed to explain the

genotype data for this nuclear family, given that F and M have partially

assigned haplotypes (due to child C1).

The recurrences for table entry DP00[i] calculation have to go through

a number of cases. For example, if it happens that

(1) F[i]0¼C2[i]0 and M[i]0¼C2[i]1,

then DP00[i] can be set to DP00[iþ 1] and if at this site at least one of

them is unswappable then all three of them become unswappable. If

(2) F[i]1 = C2[i]0, M[i]0¼C2[i]1, and at this site F is swappable,

then DP00[i] can still be set to DP00[iþ 1] with F[i]0 and F[i]1 swapping

their values and, similarly, if at this site one of M and C2 is

unswappable then all three of them become unswappable. Other cases

in which DP00[i] can be set to DP00[iþ 1] include

(3) F[i]0¼C2[i]0, M[i]1¼C2[i]1, and at this site M is swappable,

(4) F[i]0¼C2[i]1 and M[i]0¼C2[i]0, and at this site C2 is swappable,

(5) F[i]1¼C2[i]0, M[i]1¼C2[i]1, and at this site both F and M are

swappable,

(6) F[i]1¼C2[i]1, M[i]0¼C2[i]0, and at this site both F and C2 are

swappable,

(7) F[i]0¼C2[i]1, M[i]1¼C2[i]0, and at this site both M and C2 are

swappable, and

(8) All three of F, M and C2 are swappable at this site.

Note that under no genotyping error assumption and following

Mendelian inheritance rules, it could be possible that none of the

above eight cases happens and therefore DP00[i] gets the largest value

‘MAX’. But whenever DP00[i] gets a proper value less than ‘MAX’, it is

compared with DP01[iþ 1]þ 1, DP10[iþ 1]þ 1, and DP11[iþ 1]þ 2, and

takes the minimum value among them:

� DP00[i] is not greater than any of DP01[iþ 1]þ 1, DP10[iþ 1]þ 1

and DP11[iþ 1]þ 2. In this case, there is no breakpoint in between

sites i and iþ 1.

� DP00[i] is set to DP01[iþ 1]þ 1. In this case, one maternal

breakpoint is created in between sites i and iþ 1.

� DP00[i] is set to DP10[iþ 1]þ 1. In this case, one paternal

breakpoint is created in between sites i and iþ 1.

� DP00[i] is set to DP11[iþ 1]þ 2. In this case, one maternal

breakpoint and one paternal breakpoint are created in between

sites i and iþ 1.

The entries in the other three tables DP01, DP10 and DP11 are similarly

calculated.

After all the four tables have been filled out, the minimum of DP00[0],

DP01[0], DP10[0] and DP11[0] records the least number of breakpoints

Fig. 1. The structure of the test pedigree. The designated affected status

was shown by filled circles/boxes for affected and open circles/boxes for

unaffected.
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necessary to explain the genotype data for F, M and C2, under the

partial haplotype assignment. A standard tracing will recover all those

paternal and maternal breakpoints associated with this least number, as

well as the haplotypes assigned to all three members. And there are

previously swappable markers become fixed through the process.

The program continues to consider the next smallest nuclear family.

When a smallest nuclear family consists of only one parent, the dynamic

programming algorithm still applies but the number of cases to be

considered is much smaller (about half of the trio case). At the end, if

there are still swappable SNP sites, randomly fixing them, will produce

complete haplotypes for all the family members.

2.2 Breakpoint pushback

Depending on the order of consideration, a breakpoint assigned to one

child could have been assigned to other siblings. When multiple siblings

showed recombination at the same position, it is an indication that

parental phase was not assigned correctly. Revision of the parental

phase will convert the recombination to one child and reduce the overall

number of recombinations needed to explain the data. Our program

performs a process called breakpoint pushback to examine for every

breakpoint location that whether revising the parental haplotypes can

reduce the total number of breakpoints. For example, when there is a

site at which there are more than half of the second generation members

having the same (either paternal or maternal) breakpoints at the same

location, our program will push this particular breakpoint back to their

parent through revising his/her haplotypes. When two breakpoints are

extremely close to each other in one individual, the program also tries to

push one of them to other siblings by revising the parental phase. In

reality, this usually only works when only two siblings are available.

Since when there are more than two siblings, this usually generates

more breakpoints and would therefore violate our rule of breakpoint

minimization. This is important as we judge whether some breakpoints

are generated due to genotype errors, as discussed below.

2.3 Genotype data error correction

For large-scale SNP genotyping, certain number of experimental errors

is unavoidable. In our real case test, we have noticed that there are

breakpoint pairs spanning a very short distance in one individual,

separated by one or two informative marker sites. Therefore, we have

adopted a rule to correct errors like these instead of calling for two

consecutive breakpoints to explain the data. In the simulation and the

real case study described below, we have adopted a criterion that, when

two adjacent breakpoints (or 1 breakpoint when at the end of the

chromosome) are51 Mb apart and in between there are less than three

informative SNP sites to support break calling, the two breakpoints are

interpreted as caused by genotyping errors. The optimal criterion

for error correction is upon the user to decide and should be based

on the quality of the genotyping data, and the density of the SNP

markers used.

2.4 Identifying mutation regions

After error correction, we go through every SNP site on the

chromosome and find the regions shared by all or most of the affected

family members (considering phenocopy) but none or few of the

unaffected family members (considering penetrance). Those regions are

reported as suspected mutation regions. Since multiple solutions may

exist for certain regions and our program gives only one haplotype

solution, it is possible that the reported regions do not completely

overlap with the mutation region. Since our program pushes the

breakpoints towards the downstream of the chromosome, we extend the

found regions to the left by looking at the SNP sites one by one from

right to left and add the consecutive sites where we can revise the

haplotype allele such that the allele is shared by diseased family

members, but not the normal family members. The program in its

current form works on families in a one by one fashion. The users are

asked to input the maximum number of unaffected individuals to be

allowed to share the mutation allele (allowing for penetrance) and the

maximum number of affected individuals in the family to be allowed

not to share the potential mutation region (allowing for phenocopy).

The program then chooses the potential linked region(s) based on the

allele sharing status determined by the program and the parameters

entered by the user.

2.5 Graphical display of allele inheritance

After haplotype assignment, breakpoint pushback and error correction,

the allele inheritance status for any founder (F or M in the family

structure of Fig. 1) can be displayed for users to visualize the allele

sharing status. Allele sharing visualization provides a way of easily

spotting the regions shared by affected but not by unaffected in

families, or to be used to evaluate the possibility of incomplete

penetrance, phenocopy or potential errors such as misdiagnoses or

mislabeling.

3 COMPUTATIONAL RESULTS

3.1 Generating haplotype data

To test our program, we need to generate haplotype datasets

and see if our program can infer these haplotypes from the

corresponding genotype data. We have used real genotype data

from a three generation family (Fig. 1), as well as simulation

data with various pedigree structures.

Children haplotypes were generated through random inheri-

tance of parental alleles after simulating recombination events

according to the �2 model for recombination with m equals 4

(Broman, 2000; Zhao et al., 1995) and according to male/female

averaged genetic map for chromosome 1 downloaded from

HapMap (http://hapmap.org). The �2 model assumes that

crossover intermediates (C events) are distributed along the

four-strand sister chromatid bundle based on a Poisson

distribution with a rate of 2(mþ 1) C events per Morgan, and

every C event will either resolve in a crossover (Cx) or not (Co).

When a C event resolves in a Cx, the next m C’s must resolve as

Co events, and after m Co’s the next C must resolve as a Cx, i.e.

the C’s resolve in a sequence of . . .Cx(Co)mCx(Co)m. . . The

leftmost C has an equal chance to be one of Cx(Co)m (Zhao

et al., 1995). The simulation process assumes no chromatid

interference. The siblings were simulated to randomly inherit

one strand of the four-strand chromatid bundle from each

parent. However, in the simulation that considers disease

status, a mutation was randomly assigned to be close to a SNP

site, and the affected offsprings were forced to inherit the

mutation strand and the unaffected were forced not to inherit

the mutation strand. This rule loosens when considering

incomplete penetrance or phenocopy in the simulation. After

all second generation individuals have their simulated haplo-

types, we simulated the haplotypes for the third generation

members using their parent’s haplotypes with recombination,

together with a pair of randomly generated haplotypes for the

other missing parent. We have simulated 95 families this way,

and each were repeated the inheritance process 20 times with

the assumption of no genotype error, 0.1% of genotype error,
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or 0.5% genotype error, respectively. For the error simulation,

each site was simulated to have 0.1% or 0.5% chance to be

misgenotyped, to any of the other two genotypes with equal

chance (such as AA to AB or to BB). Simulations of other

family structures were done in a similar manner.

3.2 Breakpoint Recovery Accuracy

In the breakpoint generation process, a simulated (real)

breakpoint could locate at a homozygous SNP site and is not

possible to be recovered precisely by any computational

haplotyping algorithms. Also, our program pushes the break-

points towards the downstream of the chromosome, i.e.

creating a breakpoint only if necessary. A referred breakpoint

is said to be recovered if (1) it is identical to the real breakpoint

or (2) the inferred breakpoint is on the left of the real

breakpoint and they are within 5 SNP’s or (3) the inferred

breakpoint x is on the right of the real breakpoint y and we can

re-construct the haplotype SNP’s of the segment between x and

y for the individual while the haplotype data of other

individuals on this segment remain unchanged. Case (3) is

reasonable since there could be multiple solutions and our

program gives only one solution.

The breakpoint recovery precision is defined as the number of

simulated breakpoints being recovered (excluding false positive)

divided by the number of breakpoints generated by the

program (including false positives). The breakpoint recovery

recall is defined as the number of simulated breakpoints being

recovered (excluding false positives) divided by the number of

simulated (real) breakpoints.

The average precision and recall over 1900 simulated datasets

are 99.29% and 97.51%, respectively (Table 1). On this

particular pedigree structure, the average number of simulated

breakpoints over 1900 datasets for chromosome 1 is 45.36; the

average number of breakpoints created by our program is

44.91, among which 44.47 are true positives. All the numbers

are improved when using 250K chips without error. (See the

first row in Table 1.) When genotype errors were simulated, the

breakpoint precision was reduced while recall remains steady

(see the second and third rows in Table 1).
When we ran our program on these datasets by simulating

0.5% and 0.1% genotyping errors without turning on error

correction feature, our program generated many breakpoints

on these error sites and the achieved breakpoint recovery

precision was only 22.3% and 58.5%, respectively, though

recall remains high at 97.37% and 98.1%, respectively. With

the genotype error correction option turned on, the achieved

breakpoint recovery precision was improved to 78.05%, and

94.43%, respectively. These results demonstrate the strong

immunity of our program to genotyping errors.

3.3 Identification of linked regions for affected families

Assuming an autosomal dominant model, we simulated the

disease mutation for this pedigree structure and tested whether

our program can detect the disease regions with accuracy and

specificity. In the simulations assuming no error, and 0.1%

error, we have recovered all the simulated mutation regions.

In 1900 simulations with error rate of 0.5%, the program

successfully identified the mutation regions 1899 times and

failed only once. Examination of the failed case revealed that

the simulated region is relatively small (1.7�106 bp), and

happened to occur in a region that is sparsely covered by the

50K Xba chip, and there is no informative sites between two

simulated breakpoints. This may raise an issue that even for

linkage analysis using high-density SNP markers, there could

be some information gain using even denser marker genotyp-

ing, such as Affymetrix 250K chips, in rare situations when the

shared regions are small. Figure 2 showed the correlation of

the sizes of the simulated mutation regions and those of

the recovered regions. This demonstrated that, using the 50K

genechip data, we can recover nearly all the simulated mutation

regions with good accuracy (the correlation coefficient

r2¼ 0.9949, and the P-value P50.0001).
When generating the 1900 haplotype datasets for testing,

there are 40 datasets that contains two regions that are shared

by all affected family members but none of the unaffected.

For each of the 40 cases, one of the regions is the real mutation

region and the other region is generated by chance based on the

�2 recombination model. In these cases, the real mutation

regions are longer than the regions generated by chance. Out of

the 40 cases, our program successfully detected both regions

for 37 cases and missed the short regions (generated by chance)

Fig. 2. The correlation between the sizes (bp) of the simulated mutation

regions by all the affected and the sizes of the recovered regions by our

program (bp).

Table 1. Recovery of breakpoints and linked regions using 50K or

(250K) data

Breakpoint
Recovery
Precision
(250K)

Breakpoint
Recall
(250K)

Shared
mutation
region
recovery
(250K)

False
positive
linked
region
(250K)

No error 99.29% 97.51% 100% 0%
(99.67%) (99.37%) (100%) (0.37%)

0.1% error 94.43% 97.47% 100% 0.32%
(91.72%) (99.17%) (100%) (0.74%)

0.5% error 78.05% 97.37% 99.95% 2.94%
(66.7%) (98.89%) (100%) (4.06%)
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3 times. The three missed regions are very small in size, and
were located in regions with sparse marker coverage.
A false positive region is a region reported by the program as

potential mutation region but is actually not a region shared by
all the affected family members in the simulation based on the

�2 recombination model. For the simulations without error, we
did not find any false positive region. However, the number of

false positive regions increased to 0.32% and 2.94% when 0.1%
and 0.5% of errors were simulated. The sizes of those false

positive regions are usually very small, and usually reflect cases
when an error was simulated close to a breakpoint and when

surrounding markers are usually non-informative. With our
error correction feature turned off, the number of false positive

regions increases dramatically. Again, this shows that our
program has strong immunity to data errors.

We also performed the simulation process according to
incomplete penetrance or phenocopy scenarios, and in all cases

similar results to assuming full penetrance and no phenocopy
were produced.

3.4 Applicability to different family structures

We tested different pedigree structures for the applicability of
the program on different families. Apparently families with

only one child are not informative. When there are two siblings
with both parental data available, the program produced poor

precision and recall in terms of recombination sites recovery
but accurately recovered allele sharing status and detected all

the simulated mutation regions. The poor recovery of the
recombination sites is understandable since no pushback

process can be initiated for families having less than three
siblings. This is not a problem since the purpose of the program

is to determine allele sharing status and to identify linkage
regions. For families with three siblings and parental data

available, the program performs well in both crossover point
recovery and allele sharing status determination, with precision

of 98.3%, recall of 96.2% and 100% recovery of simulated
mutation regions. So the minimum requirement for the

pedigree structure is two siblings with parental data available,
and the program performs better with increased number of

siblings. In the situation when one parental data is missing, the
program performs well on certain situations but not on others

(see Supplementary table) in terms of recovery rate of mutation
regions and accuracy of the recovered regions. The program

will not work when parental data is totally missing. Further
development of the program in these situations is needed in

order to make it work on various family structures. With the
ever increasing knowledge of SNP and haplotype allele

frequencies for a given population, missing data could be
imputed and to help determine allele sharing status when

parental data is not available, but is beyond the scope of this
deterministic algorithm discussed in this study.

3.5 A real case study

We also used real data from a family consisting of 13 members
with the structure as shown in Figure 1 with designated affected

status in order to compare our program with other linkage
analysis methods. Here we have shown the result for chromo-

some 17, to demonstrate the output of our program.

In Figure 3, we have showed the allele inheritance status
from the affected maternal grand parent, M, with the disease

status labeled in different colors. After assigning these

haplotypes to all individuals in the family, the program started

re-haplotyping the whole family to see whether the number of

breakpoints could be further reduced. Note that, as pointed by

the left arrow at the bottom, a breakpoint was called on C2, C3,

C4, C5 and C6, while revision of maternal phase here and

calling the breakpoint on C1 instead would effectively abolish

the breakpoints called on all other siblings. Also note that in
Figure 3, as pointed by the arrow on the right in the middle of

the figure, a single SNP genotype requires assignment of a

breakpoint, and the program corrected it according to the error

correction rule (between this site and the end of the chromo-

some is below 1Mb). However, it should be noted that the

region is poorly covered, and more genotyping is needed to

determine the inherited allele in this telomere region for

individual C5. Our program outputs warnings on error

correction for users to make judgment or to validate
experimentally on those regions.

The final grand-maternal haplotype allele sharing status

among the 11 members (excluding the grandparents) is depicted

in Figure 4A. Here we also compared our result for this family
for chromosome 17 with result from Merlin. As shown in

Figure 4A, region 2 is clearly a region shared by all the

designated affected individuals in this family and the result is

consistent with Merlin output (Fig. 4B) reporting a lod score of

3 for this region. However, region 1 is clearly shared by G1 and

G2 and is inherited from unaffected F individual in the family

as shown in Figure 5, pointed as region 1 by double arrow, and

should not be a linked region.

4 DISCUSSION

4.1 Allele sharing determination

The general problem of computing the minimum number

of crossover breakpoints to explain a genotype dataset is an

NP-hard problem (Doi et al., 2003; Gusfield, 2001). On the

other hand, the minimum number of breaks may not

necessarily conform to the true situations. In the simulations,

Fig. 3. The computed grand-maternal haplotype allele sharing status

among the 11 members, excluding grandparents, assuming no

genotyping error.
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we have observed that the number of breakpoints generated by

our program is usually less than that of the simulated data. In

most cases, the parental haplotypes can be partitioned into

segments at the crossover breakpoints. If we wish to construct

the haplotypes, we would face an exponential number of

possible combinations of the haplotype segments (Hodge et al.,

1999). However, the desired allele sharing status among the

family members does not require the completely identified

phases. Figures 3 and 4 clearly show that the input genotype

data can be explained using different numbers of breakpoints

(with or without breakpoint pushback process), but the derived

grand parental allele sharing status is identical to each other.

This suggests that the allele sharing status determined by our

program is reliable and can be used for identifying linked

regions for affected families in linkage analysis.

4.2 Linked region identification

With the allele sharing status determined accurately by our

program, one immediate application of this sharing map is to

determine the chromosomal region(s) responsible for certain

genetic diseases without considering recombination fraction.

We compare our program with the widely used linkage analysis

software Merlin. As shown in Figure 4, both Merlin and our

program detected a roughly 10Mb region in chromosome 17

that is shared by all the diseased members but none of the

normal family numbers. Merlin reported a lod score of 3.0

on this region, while our program showed a complete

co-segregation of this region with the disease, and should

warrant a lod score of 3.3 as calculated by Z(�)¼ nlog(2) for

full penetrance cases (Ott, 1999), where n stands for the count

of non-recombinants and is 11 here. A gain in lod score is an

advantage of the deterministic method comparing to classical

maximum-likelihood methods.

We have compared in some detail on the output from Merlin

and our program for chromosome 17. It turned out that

although both programs detected the same region, our program

does show better accuracy on the left edge of the shared region

(indicated as region 2 in Fig. 4). Region 1 was clearly shown to

be shared by diseased member G1 and unaffected member G2,

and was derived from the normal grandfather as shown in

Figure 5. This indicates that based on dense SNP genotype

data, deterministic allele sharing detection may perform better

in refining linked regions than programs based on likelihood

and consideration of recombination fractions, though detailed

comparison is still needed in order to evaluate their perfor-

mances on dense SNP data.
We have checked the raw data corresponding to region 1 in

Figure 4, and confirmed that both G1 and G2 inherited from

the normal grandfather (F), supported by 10 informative SNP

sites. For regions that do not co-segregate with the disease,

Merlin showed irregular pattern of lod score calculation

(regions 3 and 4 in Fig. 4B). This is probably due to the fact

that, all these widely used linkage analysis software were

originally designed based on traditional genotype method,

usually from sparse microsatellite markers. When applying

these methods on high-density SNP genotyping data, with

marker spacing changed from hundreds of thousands kilobase

to as small as a few kilobase, the calculation of recombination

fraction between marker pairs become unnecessary. Merlin

works better on SNP data due to the use of sparse trees

(Abecasis et al., 2002), but still considers recombination

probability between adjacent markers. These programs work

well on true linked regions due to multipoint analysis, but not

so well on regions with low lod score, such as regions 3 and 4 as

shown in Figure 4. For these two regions, our program clearly

showed that there should be no recombination within each

region.

With the availability of SNP markers at41 per kb in most

regions in our genome, and the high-throughput genotype

method such as high density GeneChips, it is increasingly

possible to locate the linked disease regions with high accuracy.

For genetic diseases of Mendelian inheritance, the allele sharing

Fig. 4. The grand-maternal haplotype allele sharing for chromosome 17

among the 11 members, excluding grandparents, after breakpoint

pushback process and error correction, and lod scores fromMerlin with

parametric testing of dominant model. (A) Output from our program

with allele sharing status for founder M. (B) Output from Merlin with

LOD scores. Regions for comparison were labeled with double arrows.

Fig. 5. The grand-parental haplotype allele sharing status among the 5

third generation members for chromosome 17. Region 1 is labeled with

double arrow and shown to be shared by G1 and G2 and inherited from

the unaffected grandfather allele (FG). The grand paternal allele was

shown on top of the figure, and the grand maternal allele was shown on

the bottom (MG). The alleles for affected third generation individuals,

G1, G3, G4, were labeled in blue; the alleles for the unaffected G2 and

G5, were labeled in green.
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status produced by our program could unambiguously point

out the mutation region(s). Even for complex diseases, which

may display genetic heterogeneity, it is expected that certain

mutations may have near dominant effect in multiplex families

of early onset or particular phenotypes. The clear demonstra-

tion of allele sharing status among this kind of families could

help locate the regions shared by affected members more often

than can be explained by random chances. The allele sharing

determination method does not have to deal with multiple

comparison issues and is model-free. The method also generates

a lod score 0.3 higher than likelihood methods considering

recombination fractions, such as for region 2 shown in

Figure 4. The graphical display presents a way for users to

check for marker density, edges of the linked regions and for

potential errors in diagnoses and sample labeling.

4.3 The uncertainty of breakpoint locations

In our program, breakpoints are always pushed towards the

downstream of the chromosome as far as possible. That is, a

breakpoint is not designated until the genotype cannot be

explained otherwise. In this way, non-informative sites are

always passed until an informative site is encountered and at

that particular site, a crossover is called.
In the 1900 simulation datasets for mutation region

detection, there are 24 cases that the simulated mutations

locate to the right of nearby breakpoints, and between them

there are no informative sites, and by default of the program

the mutation will be included in the region on the left of the

region shared by all diseased members but none of normal

members. Thus, it is important to extend the suspected regions

to the left as described in Section 2.4, to the nearest informative

marker sites.

4.4 Computational efficiency

For linkage analysis, there are two basic algorithms for

cosegregation detection for a marker or multiple markers.

For the Elston–Stewart algorithm (Elston and Stewart, 1971),

the complexity is linear in terms of the size of the pedigree but

exponential in terms of the number of markers. The other

algorithm is the Lander–Green algorithm (Lander and Green,

1987), whose complexity is exponential in terms of the size of

the pedigree and linear in terms of the number of markers. The

complexity of our program is linear in terms of both number of

markers and sizes of the pedigrees. It is not restricted by

memory resources and takes a few seconds to run in practice.

4.5 The rule-base algorithm

The line of work on rule-based methods can probably date back

to Wijsman (1987). Several methods using the parsimony rule

or similar mechanisms for haplotype reconstruction have been

proposed (Chung and Gusfield, 2003; Halperin and Eskin,

2004; Li and Jiang, 2003; Qian and Beckmann, 2002; Zhang

et al., 2005), yet the applicability of these programs to real high-

density SNP genotyping data for linkage analysis in finding

disease regions has never been tested.

Probably the closely related work to ours is the one done by

Wirtenberger et al. (2005), where the authors used the genotype

data by the GeneChip 10K arrays for two three-generation

pedigrees connected via two siblings to infer haplotype blocks

shared by the individuals and thus to deduce the genome-wide

recombination distribution pattern. It appears that their

approach decomposes the pedigrees into trios and then applies

Mendelian inheritance rules on each trio to determine the

haplotypes. This certainly does not take full advantage of the

pedigree structure, but their results seemingly demonstrate that

high-density SNP markers can be used for whole genome

crossover inference. Unlike in Wirtenberger et al. (2005), we

take full advantage of the pedigree structure, rather than

decomposing it into trios.

Our program works on large datasets and accurately

determines allele sharing status in the face of phase uncertainty

at certain sites. This is important because phase uncertainty

always exists, especially when the size of the pedigree is small

(Hodge et al., 1999). Nevertheless, uncertainty on exact details

of haplotype will not affect the accurate determination of allele

sharing status when using high-density SNP markers. This is

because the informative markers between crossover sites are

usually sufficient to determine allele sharing status among

family members. The importance of designing downstream

algorithms that are not based on exact haplotype details are

also pointed out in Stephens and Scheet (2005).

Our simulations also show that for rare cases when the

shared mutation regions are very small, increasing marker

density may be helpful for the detection of such regions. The

allele sharing component of the program is model-free and

provides flexibility for downstream applications in identifying

causal mutations or susceptibility genes.

It needs to point out that the rule-based algorithm has its

limitations. While it works well on nuclear family structures

with two or more siblings, its performance is suboptimal on

situations when one parental data is missing. It does not work

on cases when parental data is totally missing. Families with

missing parental data may be analyzed by considering

information on population allele frequencies and haplotypes,

and we are currently developing algorithms that can work on

those situations. Nevertheless, our program is the first attempt

to use deterministic method for linkage analysis and serves as a

proof of principle that rule-based deterministic methods may be

better adapted to high-density SNP genotyping data. We

believe explorations in this area will eventually lead to

programs that work on all cases in a way that suits best to

the development in genotyping technologies.

5 CONCLUSIONS

We have developed a program for inference and visualization

of haplotype allele sharing status among the members of a

pedigree. It showed robustness and accuracy in detecting linked

regions and in refining the edge of those regions. The program

is highly efficient and is not restricted by the number of markers

or the size of the families. The allele sharing status visualization

feature also provides a means for post-computational inspec-

tion and should be extremely useful in situations such as

misspecification of penetrance, misdiagnosis or mislabeling.
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