
A Unified Framework for 
Learning and Search

David Silver, Rich Sutton, Martin Müller, Sylvain Gelly



Sample Based Learning



Reinforcement Learning

Sequential decision making problems

Riding a bicycle

Flying a helicopter

Navigating a maze

Playing a game



Reinforcement Learning

Every time-step t the agent

Receives a state st

Selects an action at

Receives a scalar reward rt



Reinforcement Learning

How can the agent maximise its future reward?

Given experience of the world?

s1 s2 s3a1, r1 a2, r2 a3, r3



Value Functions

All efficient reinforcement learning methods use a 
value function as an intermediate step

The return Rt is the total reward received from time t 
onwards

The state value function V(s) is the expected return 
from state s

The action value function Q(s,a) is the expected return 
from state s and action a



Monte-Carlo Evaluation

Value function is estimated by the empirical average 
return

V(st) = V(st) + 1/N(st) [Rt - V(st)]

s1 s2 s3a1, r1 a2, r2 a3, r3



TD(λ)

Value function is updated from future estimates

Temporal difference parameter λ controls timescale

λ=0: value function is updated from successor state

V(st) = V(st) + α[r + V(st+1) - V(st)]

s1 s2 s3a1, r1 a2, r2 a3, r3



TD(λ)

Value function is updated from future estimates

Temporal difference parameter λ controls timescale

λ=1: value function is updated from actual return

V(st) = V(st) + α[Rt - V(st)]

s1 s2 s3a1, r1 a2, r2 a3, r3



TD(λ)

Value function is updated from future estimates

Temporal difference parameter λ controls timescale

General λ: value function updated from future values

V(st) = V(st) + α[Rλ - V(st)]

s1 s2 s3a1, r1 a2, r2 a3, r3



Sarsa(λ)

TD(λ) is used to evaluate the current policy

Policy is updated to be ε-greedy with respect to action 
value function

Exploration parameter ε ensures all states and actions 
are visited

Converges on optimal policy



Linear Sarsa(λ)

Approximate value function by a linear combination of 
features φ(s,a) and parameters θ, Q(s,a) = θTφ(s,a)

Tabular Sarsa is a special case



Sample Based Search



Sample Based Search

Sample based learning applied to simulated 
experience

Experience is simulated using a transition model and 
reward model

Complete episodes are simulated from current state

Learning is specialised to the distribution of states 
encountered from the current position



Self-Play

For two-player, zero sum games

Self-play provides a model of the environment

Assumption: opponent plays as we do

Sample-based search with table lookup and self-play 
converges on the minimax solution



Sample-Based Search Algorithms

Monte-Carlo simulation

Monte-Carlo Tree Search

UCT

UCT-RAVE



Advantages

Evaluation is grounded in experience

Experience is sampled selectively

Can use state abstraction

Accuracy of evaluation increases over time

High performance, anytime algorithms

Relatively easy to parallelise



A Unified Framework



Dyna

Combines learning with search

Experience is simulated using a model 

Value function is updated from real experience

Value function is also updated from simulated 
experience

Sarsa(λ) update rule



Dyna-2

Permanent memory updated from real experience

Transient memory updated from simulated experience

Linear Sarsa(λ) update rule

Value function combines both memories

Transient memory is reset at start of new episode



Choices

Model: self-play, ...

Features: table lookup, local shape features, RAVE, ...

Exploration policy: UCB, ϵ-greedy, ...

Bootstrapping: Monte-Carlo, TD

Learning rate: 1/N, constant, ...



Choices: UCT

Model: self-play

Features: table lookup, local shape features, RAVE, ...

Exploration policy: UCB, ϵ-greedy, ...

Bootstrapping: Monte-Carlo, TD

Learning rate: 1/N, constant, ...



Choices: RLGO

Model: self-play

Features: table lookup, local shape features, RAVE, ...

Exploration policy: UCB, ϵ-greedy, ...

Bootstrapping: Monte-Carlo, TD

Learning rate: 1/N, constant, ...



Local Shape Features



Go Proverbs

The one point jump 
is never wrong

Hane at the head of 
two stones

Ponnuki is worth 30 
points



Local Shape Features

A local shape is a square on the board 
specifying a configuration of stones

All possible configurations are used 
from 1x1 through to 3x3

~1 million binary features



RLGO Value Function
star t

!
1

!
2

!
3

Q
RLGO!



Two Memories

Local shape features

Two sets of parameters

Learning memory: general shape

Search memory: contextual shape



Empty Triangle: Bad Shape



Empty Triangle: Guzumi



Empty Triangle: Guzumi



Empty Triangle: “Brilliant”



Empty Triangle: “Brilliant”



Generalisation in Search



Generalisation in Search



Results for Dyna-2



Dyna-2 with Alpha-Beta

Dyna-2 value function provides an evaluation function

Adapted online to the current context

Why not use traditional alpha-beta search

Using permanent + transient memory as evaluation 
functions?



Dyna-2 + Alpha-Beta



Bootstrapping



9x9 Go programs

Program Learning Search Elo

Magog Supervised learning  Global alpha-beta search ~1700

GnuGo (Handcrafted) Local alpha-beta search ~1800

NeuroGo Temporal difference learning Global alpha-beta search ~1800

RLGO Temporal difference learning Abstract search ~2100

MoGo Temporal difference learning UCT-RAVE ~2500

CrazyStone, 
GreenPeep Supervised learning UCT ~2500



Summary

Generalisation during sample based search 
outperforms UCT

Combining learning and search combines either 
method alone

Dyna-2 provides a principled architecture for learning 
and search with generalisation

Heuristic UCT and UCT-RAVE are special cases



Questions?


