# A Unified Framework for Learning and Search

David Silver, Rich Sutton, Martin Müller, Sylvain Gelly

### Sample Based Learning

## **Reinforcement Learning**

Sequential decision making problems

- Riding a bicycle
- Flying a helicopter
- Navigating a maze
- Playing a game

### **Reinforcement Learning**

- Every time-step *t* the agent
  - Receives a state *s*<sub>t</sub>
  - Selects an action *a*<sup>*t*</sup>
  - Receives a scalar reward *r*<sub>t</sub>

### **Reinforcement Learning**

- How can the agent maximise its future reward?
- Given *experience* of the world?

$$s_1$$
  $a_1, r_1$   $s_2$   $a_2, r_2$   $s_3$   $a_3, r_3$ 

### Value Functions

- All efficient reinforcement learning methods use a *value function* as an intermediate step
- The return *R<sub>t</sub>* is the total reward received from time *t* onwards
- The state value function *V*(*s*) is the expected return from state *s*
- The action value function *Q*(*s*,*a*) is the expected return from state *s* and action *a*

#### **Monte-Carlo Evaluation**

Value function is estimated by the empirical average return

$$s_1$$
  $a_1$ ,  $r_1$   $s_2$   $a_2$ ,  $r_2$   $s_3$   $a_3$ ,  $r_3$ 

•  $V(s_t) = V(s_t) + 1/N(s_t) [R_t - V(s_t)]$ 



- Value function is updated from future estimates
- Temporal difference parameter  $\lambda$  controls timescale
- $\lambda$ =0: value function is updated from successor state

$$s_1$$
  $a_1$ ,  $r_1$   $s_2$   $a_2$ ,  $r_2$   $s_3$   $a_3$ ,  $r_3$ 

•  $V(s_t) = V(s_t) + \alpha [r + V(s_{t+1}) - V(s_t)]$ 



- Value function is updated from future estimates
- Temporal difference parameter  $\lambda$  controls timescale
- $\lambda$ =1: value function is updated from actual return

$$s_1$$
  $a_1$ ,  $r_1$   $s_2$   $a_2$ ,  $r_2$   $s_3$   $a_3$ ,  $r_3$ 

• 
$$V(s_t) = V(s_t) + \alpha[R_t - V(s_t)]$$



- Value function is updated from future estimates
- Temporal difference parameter  $\lambda$  controls timescale
- General  $\lambda$ : value function updated from future values

$$s_1$$
  $a_1$ ,  $r_1$   $s_2$   $a_2$ ,  $r_2$   $s_3$   $a_3$ ,  $r_3$ 

• 
$$V(s_t) = V(s_t) + \alpha [R^{\lambda} - V(s_t)]$$



- TD( $\lambda$ ) is used to evaluate the current policy
- Policy is updated to be ε-greedy with respect to action value function
- Exploration parameter ε ensures all states and actions are visited
- Converges on optimal policy

# Linear Sarsa(λ)

- Approximate value function by a linear combination of features  $\phi(s,a)$  and parameters  $\theta$ ,  $Q(s,a) = \theta^T \phi(s,a)$
- Tabular Sarsa is a special case

#### Sample Based Search

# Sample Based Search

- Sample based learning applied to simulated experience
- Experience is simulated using a *transition model* and *reward model*
- Complete episodes are simulated from current state
- Learning is specialised to the distribution of states encountered from the current position



- For two-player, zero sum games
- Self-play provides a model of the environment
- Assumption: opponent plays as we do
- Sample-based search with table lookup and self-play converges on the minimax solution

#### **Sample-Based Search Algorithms**

- Monte-Carlo simulation
- Monte-Carlo Tree Search
- UCT
- UCT-RAVE



- Evaluation is grounded in experience
- Experience is sampled selectively
- Can use state abstraction
- Accuracy of evaluation increases over time
- High performance, anytime algorithms
- Relatively easy to parallelise

### **A Unified Framework**



- Combines learning with search
- Experience is simulated using a model
- Value function is updated from real experience
- Value function is also updated from simulated experience
- Sarsa(λ) update rule



- Permanent memory updated from real experience
- Transient memory updated from simulated experience
- Linear Sarsa(λ) update rule
- Value function combines both memories
- Transient memory is reset at start of new episode



- Model: self-play, ...
- Features: table lookup, local shape features, RAVE, ...
- Exploration policy: UCB, *E*-greedy, ...
- Bootstrapping: Monte-Carlo, TD
- Learning rate: 1/N, constant, ...

### **Choices: UCT**

- Model: self-play
- Features: table lookup, local shape features, RAVE, ...
- Exploration policy: UCB, ε-greedy, ...
- Bootstrapping: Monte-Carlo, TD
- Learning rate: 1/N, constant, ...

### **Choices: RLGO**

- Model: self-play
- Features: table lookup, local shape features, RAVE, ...
- Exploration policy: UCB, *E-greedy*, ...
- Bootstrapping: Monte-Carlo, TD
- Learning rate: 1/N, constant, ...

### Local Shape Features

#### Go Proverbs



• The one point jump is never wrong

• Hane at the head of two stones

Ponnuki is worth 30 points

# Local Shape Features

- A *local shape* is a square on the board specifying a configuration of stones
- All possible configurations are used from 1x1 through to 3x3
- ~1 million binary features



#### **RLGO Value Function**



### **Two Memories**

- Local shape features
- Two sets of parameters
- Learning memory: general shape
- Search memory: contextual shape

# **Empty Triangle: Bad Shape**



# Empty Triangle: Guzumi



# Empty Triangle: Guzumi



# Empty Triangle: "Brilliant"



# Empty Triangle: "Brilliant"



#### **Generalisation in Search**



#### **Generalisation in Search**



### **Results for Dyna-2**



# **Dyna-2 with Alpha-Beta**

- Dyna-2 value function provides an evaluation function
- Adapted online to the current context
- Why not use traditional alpha-beta search
- Using permanent + transient memory as evaluation functions?

### Dyna-2 + Alpha-Beta



### Bootstrapping



# 9x9 Go programs

| Program                  | Learning                     | Search                   | Elo   |
|--------------------------|------------------------------|--------------------------|-------|
| Magog                    | Supervised learning          | Global alpha-beta search | ~1700 |
| GnuGo                    | (Handcrafted)                | Local alpha-beta search  | ~1800 |
| NeuroGo                  | Temporal difference learning | Global alpha-beta search | ~1800 |
| RLGO                     | Temporal difference learning | Abstract search          | ~2100 |
| MoGo                     | Temporal difference learning | UCT-RAVE                 | ~2500 |
| CrazyStone,<br>GreenPeep | Supervised learning          | UCT                      | ~2500 |



- Generalisation during sample based search outperforms UCT
- Combining learning and search combines either method alone
- Dyna-2 provides a principled architecture for learning and search with generalisation
- Heuristic UCT and UCT-RAVE are special cases

