Main Results

Experiments

Conclusions

The UCB Algorithm

Paper Finite-time Analysis of the Multiarmed Bandit Problem by Auer, Cesa-Bianchi, Fischer, Machine Learning 27, 2002

Presented by Markus Enzenberger. Go Seminar, University of Alberta.

March 14, 2007

The UCB Algorithm

・ロン ・回 とくほど ・ ほとう

-2

Experiments

Conclusions

Introduction

Multiarmed Bandit Problem

Regret

Lai and Robbins (1985)

In this Paper

Main Results

Theorem 1 (UCB1)

Theorem 2 (UCB2)

Theorem 3 (ϵ_n -GREEDY)

Theorem 4 (UCB1-NORMAL)

Independence Assumptions

Experiments

UCB1-TUNED Setup Best value for α Summary of Results Comparison on Distribution 11

Conclusions

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

-2

Introduction Multiarmed Bandit Problem Main Results

Experiments

Conclusions

Multiarmed Bandit Problem

- Example for the exploration vs exploitation dilemma
- K independent gambling machines (armed bandits)
- Each machine has an unknown stationary probability distribution for generating the reward
- Observed rewards when playing machine i: $X_{i,1}, X_{i,2}, \ldots$
- Policy A chooses next machine based on previous sequence of plays and rewards

Introduction ••••	Main Results	Experiments	Conclusions
Regret			
Regret			

Regret of policy A

$$\mu^* n - \mu_j \sum_{j=1}^{K} \mathbb{E}[T_j(n)]$$

- μ_i expectation of machine *i*
- μ^* expectation of optimal machine
- T_j number of times machine j was played

The regret is the expected loss after n plays due to the fact that the policy does not always play the optimal machine.

→ 御 → → 注 → → 注 →

 Introduction
 Main Results
 Experiments
 Conclusions

 0000
 000000000
 00000
 00000

 Lai and Robbins (1985)

Lai and Robbins (1985)

Policy for a class of reward distributions (including: normal, Bernoulli, Poisson) with regret asymptotically bounded by logarithm of *n*:

$$\mathbb{E}[T_j(n)] \leq rac{\ln(n)}{D(p_j || p^*)} \qquad n o \infty$$

 $D(p_j || p^*)$ Kullback-Leibler divergence between reward densities

- This is the best possible regret
- Policy computes upper confidence index for each machine
- Needs entire sequence of rewards for each machine

・ロン ・回 と ・ヨン ・ヨン

Introduction	Main Results	Experiments	Conclusions
0000	0000000000	00000	
In this Paper			
In this Paper			
•			

- Show policies with logarithmic regret uniformly over time
- Policies are simple and efficient

• Notation:
$$\Delta_i := \mu^* - \mu_i$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

-21

Introduction	Main Results	Experiments	Conclusions
0000	000000000	00000	
Theorem 1 (UCB1)			

Theorem 1 (UCB1)

Policy with finite-time regret logarithmically bounded for arbitrary sets of reward distributions with bounded support

Deterministic policy: UCB1. Initialization: Play each machine once. Loop:

- Play machine j that maximizes $\bar{x}_j + \sqrt{\frac{2 \ln n}{n_j}}$, where \bar{x}_j is the average reward obtained from machine j, n_j is the number of times machine j has been played so far, and n is the overall number of plays done so far.

Introduction	Main Results	Experiments	Conclusions
Theorem 1 (UCB1)			

Theorem 1. For all K > 1, if policy UCB1 is run on K machines having arbitrary reward distributions P_1, \ldots, P_K with support in [0, 1], then its expected regret after any number n of plays is at most

$$\left[8\sum_{i:\mu_i<\mu^*}\left(\frac{\ln n}{\Delta_i}\right)\right] + \left(1 + \frac{\pi^2}{3}\right)\left(\sum_{j=1}^K \Delta_j\right)$$

where μ_1, \ldots, μ_K are the expected values of P_1, \ldots, P_K .

- ► $\mathbb{E}[T_j(n)] \le \frac{8}{\Delta_i^2} \ln(n)$ worse than Lai and Robbins
- D(p_j||p^{*}) ≥ 2Δ_j² with best possible constant 2
 → UCB2 brings main constant arbitrarily close to 1/(2Δ_i²)

ヘロナ ヘアナ ヘビナ ヘビナ

Theorem 2 (UCB2)

Main Results

Experiments

Conclusions

• 3 > 1

Theorem 2 (UCB2)

More complicated version of UCB1 with better constants for bound on regret.

Deterministic policy: UCB2. Parameters: $0 < \alpha < 1$. Initialization: Set $r_j = 0$ for j = 1, ..., K. Play each machine once. Loop:

- 1. Select machine j maximizing $\bar{x}_j + a_{n,r_j}$, where \bar{x}_j is the average reward obtained from machine j, a_{n,r_j} is defined in (3), and n is the overall number of plays done so far.
- 2. Play machine j exactly $\tau(r_j + 1) \tau(r_j)$ times.

3. Set
$$r_j \leftarrow r_j + 1$$
.

Introduction	Main Results ○○○●○○○○○○	Experiments	Conclusions
Theorem 2 (UCB2)			

$$a_{n,r} = \sqrt{\frac{(1+\alpha)\ln(en/\tau(r))}{2\tau(r)}}$$

where

 $\tau(r) = \lceil (1+\alpha)^r \rceil.$

The UCB Algorithm

<□> <□> <□> <=> <=> <=> <=> <=> <<=> <=> <<</p>

Introduction		Experiments	Conclusions
0000	0000000000	00000	
Theorem 2 (UCB2)			

Theorem 2. For all K > 1, if policy UCB2 is run with input $0 < \alpha < 1$ on K machines having arbitrary reward distributions P_1, \ldots, P_K with support in [0, 1], then its expected regret after any number

$$n \geq \max_{i:\mu_i < \mu^*} \frac{1}{2\Delta_i^2}$$

of plays is at most

$$\sum_{i:\,\mu_i<\mu^*} \left(\frac{(1+\alpha)(1+4\alpha)\ln\left(2e\Delta_i^2n\right)}{2\Delta_i} + \frac{c_\alpha}{\Delta_i}\right) \tag{4}$$

where μ_1, \ldots, μ_K are the expected values of P_1, \ldots, P_K .

First term brings constant arbitrarily close to $\frac{1}{2\Delta_i^2}$ for small α

•
$$c_{\alpha} \rightarrow \infty$$
 as $\alpha \rightarrow 0$

• Let $\alpha = \alpha_n$ slowly decrease

・ロン ・回 と ・ ヨン ・ ヨン

Main Results

Experiments

Conclusions

Theorem 3 (ϵ_n -GREEDY)

Theorem 3 (ϵ_n -GREEDY)

Similar result for ϵ -greedy heuristic.

(ϵ needs to go to 0; constant ϵ has linear regret)

Randomized policy: ε_n -GREEDY. **Parameters:** c > 0 and 0 < d < 1. **Initialization:** Define the sequence $\varepsilon_n \in (0, 1], n = 1, 2, ...,$ by

$$arepsilon_n \stackrel{ ext{def}}{=} \min\left\{1, \ rac{cK}{d^2n}
ight\}$$

Loop: For each $n = 1, 2, \ldots$

- Let i_n be the machine with the highest current average reward.

- With probability $1 - \epsilon_n$ play i_n and with probability ϵ_n play a random arm.

The UCB Algorithm

- 4 同 6 4 日 6 4 日 6

Introduction	Main Results	Experiments	Conclusions
0000	0000000000	00000	
Theorem 3 (ϵ_n -GREEDY)			

Theorem 3. For all K > 1 and for all reward distributions P_1, \ldots, P_K with support in [0, 1], if policy ε_n -GREEDY is run with input parameter

 $0 < d \leq \min_{i:\mu_i < \mu^*} \Delta_i,$

then the probability that after any number $n \ge c K / d$ of plays ε_n -GREEDY chooses a suboptimal machine j is at most

$$\begin{aligned} \frac{c}{d^2n} &+ 2\left(\frac{c}{d^2}\ln\frac{(n-1)d^2e^{1/2}}{cK}\right) \left(\frac{cK}{(n-1)d^2e^{1/2}}\right)^{c/(5d^2)} \\ &+ \frac{4e}{d^2}\left(\frac{cK}{(n-1)d^2e^{1/2}}\right)^{c/2}. \end{aligned}$$

- For c large enough, the bound is of order c/(d²n) + o(1/n) → logarithmic bound on regret
- Bound on instanteneous regret
- Need to know lower bound d on expectation between best and second-best machine

Main Results

Experiments

Conclusions

Theorem 4 (UCB1-NORMAL)

Theorem 4 (UCB1-NORMAL)

Indexed based policy with logarithmically bounded finite-time regret for normally distributed reward distributions with unknown mean and variance.

Introd	uction
0000	

Main Results

Experiments

Theorem 4 (UCB1-NORMAL)

Deterministic policy: UCB1-NORMAL. Loop: For each n = 1, 2, ...

- If there is a machine which has been played less than $\lceil 8 \log n \rceil$ times then play this machine.
- Otherwise play machine j that maximizes

$$\bar{x}_j + \sqrt{16 \cdot \frac{q_j - n_j \bar{x}_j^2}{n_j - 1} \cdot \frac{\ln(n-1)}{n_j}}$$

where \bar{x}_j is the average reward obtained from machine j, q_j is the sum of squared rewards obtained from machine j, and n_j is the number of times machine j has been played so far.

- Update \bar{x}_j and q_j with the obtained reward x_j .

(4月) (4日) (4日)

Introduction	Main Results	Experiments	Conclusions
0000	000000000000	00000	
Theorem 4 (UCB1-NORMAL)			

Theorem 4. For all K > 1, if policy UCB1-NORMAL is run on K machines having normal reward distributions P_1, \ldots, P_K , then its expected regret after any number n of plays is at most

$$256(\log n)\left(\sum_{i:\mu_i<\mu^*}\frac{\sigma_i^2}{\Delta_i}\right) + \left(1 + \frac{\pi^2}{2} + 8\log n\right)\left(\sum_{j=1}^K\Delta_j\right)$$

where μ_1, \ldots, μ_K and $\sigma_1^2, \ldots, \sigma_K^2$ are the means and variances of the distributions P_1, \ldots, P_K .

- Like UCB1, but since kind of distribution is known, sample variance is used to estimate variance of distribution
- Proof depends on bounds for tails of χ² and Student distribution, which were only verified numerically

イロト イヨト イヨト イヨト 三星

Main Results

Experiments

Conclusions

Independence Assumptions

Independence Assumptions

Theorem 1–3 also hold for rewards that are not independent across machines:

 $X_{i,s}$ and $X_{j,t}$ might be dependent for any s, t and $i \neq j$

 The rewards of a single machine do not need to be independent and identically-distributed.
 Weaker assumption:

 $\mathbb{E}[X_{i,t}|X_{i,1},\ldots,X_{i,t-1}]=\mu_i ext{ for all } 1\leq t\leq n$

< □ > < □ > < Ξ > < Ξ > < Ξ > = Ξ

Introduction	Main Results	Experiments ●○○○○	Conclusions
UCB1-TUNED			
UCB1-TUNED			

Fined-tuned version of UCB taking the measured variance into account (no proven regret bounds) Upper confidence bound on variance of machine j

$$V_j(s) \stackrel{\text{def}}{=} \left(\frac{1}{s} \sum_{\tau=1}^s X_{j,\tau}^2\right) - \bar{X}_{j,s}^2 + \sqrt{\frac{2\ln t}{s}}$$

Replace upper confidence bound in UCB1 by

$$\sqrt{\frac{\ln n}{n_j}}\min\{1/4, V_j(n_j)\}$$

1/4 is upper bound on variance of a Bernoulli random variable

The UCB Algorithm

Introduction	Main Results	Experiments	Conclusions
Setup			
Distributions			

	1	2	3	4	5	6	7	8	9	10
1	0.9	0.6								
2	0.9	0.8								
3	0.55	0.45								
11	0.9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
12	0.9	0.8	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.6
13	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
14	0.55	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45

<□> <□> <□> <=> <=> <=> <=> <=> <<=> <=> <<</p>

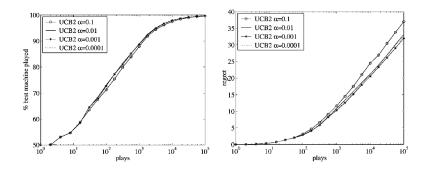
Main Results

Experiments

Conclusions

Best value for α

Best value for α



- Relatively insensitive, as long as α is small
- Use fixed $\alpha = 0.001$

・ロト ・回ト ・ヨト ・ヨト

Main Results

Experiments

Conclusions

Summary of Results

Summary of Results

- An optimally tuned ϵ_n -GREEDY performs almost always best
- Performance of not well-tuned ϵ_n -GREEDY degrades rapidly
- ► In most cases UCB1-TUNED performs comparably to a well-tuned e_n-GREEDY
- UCB1-TUNED not sensitive to the variances of the machines
- UCB2 performs similar to UCB1-TUNED, but always slightly worse

イロト イポト イヨト イヨト

Main Results

Experiments

Conclusions

Comparison on Distribution 11

Comparison on Distribution 11

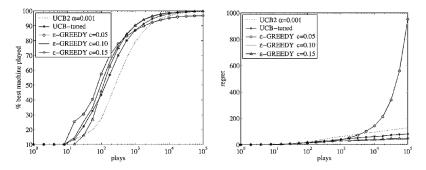


Figure 9. Comparison on distribution 11 (10 machines with parameters 0.9, 0.6, ..., 0.6).

The UCB Algorithm

・ロト ・日本 ・モト ・モト

Main Results

Experiments

Conclusions

Conclusions

- Simple, efficient policies for the bandit problem on any set of reward distributions with known bounded support with uniform logarithmic regret
- ► Based on upper confidence bounds (with exception of ϵ_n -GREEDY)
- Robust with respect to the introduction of moderate dependencies
- Many extensions of this work are possible
- Generalize to non-stationary problems
- Based on Gittins allocation indices (needs preliminary knowledge or learning of the indices)

・ロン ・回 と ・ヨン ・ヨン