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Multiarmed Bandit Problem

Multiarmed Bandit Problem

I Example for the exploration vs exploitation dilemma

I K independent gambling machines (armed bandits)

I Each machine has an unknown stationary probability
distribution for generating the reward

I Observed rewards when playing machine i :
Xi ,1,Xi ,2, . . .

I Policy A chooses next machine based on previous sequence of
plays and rewards
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Regret

Regret

Regret of policy A

µ∗n − µj

K∑
j=1

E[Tj(n)]

µi expectation of machine i
µ∗ expectation of optimal machine
Tj number of times machine j was played

The regret is the expected loss after n plays due to the fact that
the policy does not always play the optimal machine.
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Lai and Robbins (1985)

Lai and Robbins (1985)

Policy for a class of reward distributions (including: normal,
Bernoulli, Poisson) with regret asymptotically bounded by
logarithm of n:

E[Tj(n)] ≤ ln(n)

D(pj ||p∗)
n →∞

D(pj ||p∗) Kullback-Leibler divergence between reward densities

I This is the best possible regret

I Policy computes upper confidence index for each machine

I Needs entire sequence of rewards for each machine
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In this Paper

In this Paper

I Show policies with logarithmic regret uniformly over time

I Policies are simple and efficient

I Notation: ∆i := µ∗ − µi
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Theorem 1 (UCB1)

Theorem 1 (UCB1)

Policy with finite-time regret logarithmically bounded for arbitrary
sets of reward distributions with bounded support
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Theorem 1 (UCB1)

I E[Tj(n)] ≤ 8
∆2

j
ln(n) worse than Lai and Robbins

I D(pj ||p∗) ≥ 2∆2
j with best possible constant 2

→ UCB2 brings main constant arbitrarily close to 1
2∆2

j
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Theorem 2 (UCB2)

Theorem 2 (UCB2)

More complicated version of UCB1 with better constants for
bound on regret.
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Theorem 2 (UCB2)
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Theorem 2 (UCB2)

I First term brings constant arbitrarily close to 1
2∆2

j
for small α

I cα →∞ as α → 0

I Let α = αn slowly decrease
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Theorem 3 (εn-GREEDY)

Theorem 3 (εn-GREEDY)

Similar result for ε-greedy heuristic.
(ε needs to go to 0; constant ε has linear regret)
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Theorem 3 (εn-GREEDY)

I For c large enough, the bound is of order c/(d2n) + o(1/n)
→ logarithmic bound on regret

I Bound on instanteneous regret

I Need to know lower bound d on expectation between best
and second-best machine
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Theorem 4 (UCB1-NORMAL)

Theorem 4 (UCB1-NORMAL)

Indexed based policy with logarithmically bounded finite-time
regret for normally distributed reward distributions with unknown
mean and variance.
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Theorem 4 (UCB1-NORMAL)
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Theorem 4 (UCB1-NORMAL)

I Like UCB1, but since kind of distribution is known, sample
variance is used to estimate variance of distribution

I Proof depends on bounds for tails of χ2 and Student
distribution, which were only verified numerically
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Independence Assumptions

Independence Assumptions

I Theorem 1–3 also hold for rewards that are
not independent across machines:
Xi ,s and Xj ,t might be dependent for any s, t and i 6= j

I The rewards of a single machine do not need to be
independent and identically-distributed.
Weaker assumption:
E[Xi ,t |Xi ,1, . . . ,Xi ,t−1] = µi for all 1 ≤ t ≤ n
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UCB1-TUNED

UCB1-TUNED

Fined-tuned version of UCB taking the measured variance into
account (no proven regret bounds)
Upper confidence bound on variance of machine j

Replace upper confidence bound in UCB1 by

1/4 is upper bound on variance of a Bernoulli random variable
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Setup

Distributions
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Best value for α

Best value for α

I Relatively insensitive, as long as α is small

I Use fixed α = 0.001
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Summary of Results

Summary of Results

I An optimally tuned εn-GREEDY performs almost always best

I Performance of not well-tuned εn-GREEDY degrades rapidly

I In most cases UCB1-TUNED performs comparably to a
well-tuned εn-GREEDY

I UCB1-TUNED not sensitive to the variances of the machines

I UCB2 performs similar to UCB1-TUNED, but always slightly
worse
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Comparison on Distribution 11

Comparison on Distribution 11
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Conclusions

I Simple, efficient policies for the bandit problem on any set of
reward distributions with known bounded support with
uniform logarithmic regret

I Based on upper confidence bounds (with exception of
εn-GREEDY)

I Robust with respect to the introduction of moderate
dependencies

I Many extensions of this work are possible

I Generalize to non-stationary problems

I Based on Gittins allocation indices
(needs preliminary knowledge or learning of the indices)
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