Monte-Carlo Go Reinforcement Learning Experiments

Paper by Bruno Bouzy, Guillaume Chaslot, IEEE 2006

Presented by Markus Enzenberger.
Go Seminar, University of Alberta.

November 16, 2006
Background

Indigo project

Monte-Carlo Go

Basic Monte-Carlo Go
Monte-Carlo Go with specific knowledge

Reinforcement Learning and Monte-Carlo Go

The randomness dimension

Experiments

Experiment 1: On program vs. population
Experiment 2: relative difference at MC level

Conclusion
Indigo project

- 9th KGS, 19x19, Dec 2005 (Formal: 3rd/7, Open: 1st/9)
- 8th KGS, 9x9, Formal, Nov 2005 (4th/11)
- 7th KGS, 19x19, Open, Oct 2005 (2th/7)
- 2005 WCGC, Tainan, Taiwan, Sept 2005 (6th/7)
- 10th CO, Taipei, Sept 2005 (19x19: 4th/7, 9x9: 3rd/9)
- 9th CO, Ramat-Gan, Jul 2004 (19x19: 3rd/5, 9x9: 4th/9)
- 8th CO, Graz, Nov 2003 (19x19: 5th/11, 9x9: 4th/10)
- Comp. Go Festival, Guyang, China, Oct 2002 (6th/10)
- 21st Century Cup, 2002, Edmonton, Canada (10th/14)
- Ing Cup 1999 Shanghai, China (13th/16)
- Ing Cup 1998 London, England (10th/17)
Basic Monte-Carlo Go

- General MC model (Abramson)
- all-moves-as-first heuristic (Brügmann)
- Standard deviation, random games, $9 \times 9 \approx 35$
- Precision: 1 point
- 1000 games $\equiv 68\%$ confidence
- 4000 games $\equiv 95\%$ confidence
Progressive pruning

Fig. 1. Progressive pruning: the root is expanded (1). Random games start on children (2). After several random games, some moves are pruned (3). After other random games, one move is left, and the process stops (4).
Advantages of MC

- Bouzy, Helmstetter: MC programs on par with Indigo2002
- MC takes advantage of faster computers
- Heavily knowledge based programs less robust
- Global view (avoids errors due to decomposition)
- Easy to develop
Indigo2003

Two ways of associating Go knowledge with MC

- Pre-select moves for MC
- Insert knowledge in random games
 (“pseudo-random” := non-uniform probability)
Two Modules of Indigo2003

Fig. 2. The two modules of Indigo2003: the pre-selection module selects N_{select} moves by the mean of lot of knowledge, and local tree searches, additioanally yielding a conceptual evaluation of the position. Then, among the N_{select} moves, the MC module selects the move to play by the mean of random simulations.
Pseudo-Random (PR) player

- **Capture-escape urgency**: fill last liberty of one-liberty string
 urgency linear in string size

- **Cut-connect urgency**: 3×3 patterns
 (smaller: insufficient; larger: lower urgency)

- **Total urgency** is sum of both urgencies

- **Probability of move** proportional to total urgency

 - 3x3 pattern urgency table
 - 3^8 3x3 pattern (center is empty)
 - 25 dispositions to the edge
 - #patterns = 250,000
 - one-liberty urgency

Paper by Bruno Bouzy, Guillaume Chaslot, IEEE 2006
MC (Manual) vs MC(Zero)

- **Manual**: urgencies assigned to 3×3 patterns assigned by human expert
- correspond to **Go concepts** such as cut and connect
- contains non-zero and high values only very sparsely

<table>
<thead>
<tr>
<th>board size</th>
<th>9x9</th>
<th>13x13</th>
<th>19x19</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>+8</td>
<td>+40</td>
<td>+100</td>
</tr>
<tr>
<td>% wins</td>
<td>68%</td>
<td>93%</td>
<td>97%</td>
</tr>
</tbody>
</table>

TABLE II

Results of MC (Manual) vs MC (Zero) for the usual board sizes.
Reinforcement Learning and Monte-Carlo Go

▶ Q-learning for learning action values
▶ \(p_1 \) better than \(p_2 \) (at random level) does not necessarily mean that \(MC(p_1) \) better than \(MC(p_2) \) (at MC-level)
▶ Randomization vs. determinism
The randomness dimension: the completely deterministic programs are situated on the left. Zero is situated on the right. On the left of Zero, there are the PR programs and Manual. On the right of deterministic programs, there are ε-greedy programs [1]. The temperature indicates a randomisation degree: 0 for deterministic programs, and infinite for Zero, the uniform probability player.
Experiment 1: One program vs. population

- Patterns have action values $Q \in]-1, +1[$
- Urgency:
 $$U = \left(\frac{1 + Q}{1 - Q}\right)^k$$
- Value updates after playing a block of b games:
 $$Q_{\text{play}} = Q_{\text{play}} + \lambda^b Q_{\text{learn}}$$
Experiment 1a: one unique learning program

- RLPR ≫ Zero
- RLPR < Manual
- MC(RLPR) ≪ MC(Manual)

- Highly dependent on initial conditions
- Q-values learnt in first block, later only these Q-values are increased
Experiment 1b: a population of learning programs

- Evolutionary computing
- Test against Zero and Manual
- Select and duplicate best programs according to some scheme

Starting population = Zero
- RLPR = Zero + 180
- RLPR = Manual - 50
- MC(RLPR) ≪ MC(Manual)

Starting population = Manual
- RLPR = Zero + 180
- RLPR = Manual + 50
- MC(RLPR) = MC(Manual) - 20
Experiment 1: On program vs. population

- RLPR programs have a tendency to determinism
- Using EC lowers the problem but does not remove it completely
Experiment 2: relative difference at MC level

- MC(RLPR) plays against itself again
- Update rule to avoid determinism for a pair of patterns a, b:

\[
\exp(C(V_a - V_b)) = \frac{u_a}{u_b}
\]

\[
\delta = Q_a - Q_b - C(V_a - V_b)
\]

\[
Q_a = Q_a - \alpha \delta
\]

\[
Q_b = Q_b - \alpha \delta
\]
9×9

- \(MC(\text{RLPR}) = MC(\text{Manual}) + 3 \)

19×19 (learning on 9×9)

- \(MC(\text{RLPR}) = MC(\text{Manual}) - 30 \)
Conclusion

- Determinism was identified as obstacle
- Evolutionary computing was used to avoid determinism (strong dependence on initial conditions)
- Relative differences were used to avoid determinism