
UCT AND beyond
David Silver



The goal of this talk

What is UCT? (No theory!)

Where does UCT belong in the family of 
reinforcement learning methods?

What are the underlying ideas behind UCT?

Can these ideas be applied in other ways?

Beyond UCT, what next?



INTRODUCTION TO UCT

UCT is a reinforcement learning algorithm

It learns a value function predicting the 
expected outcome from each position

As value function improves, so does the policy

Opponent model is self-play using same policy



COMPONENTS OF UCT

Search: by sampling full trajectories

Learning algorithm: Monte-Carlo

Value function: Tabular

Exploration: Tabular, counter based bonus

Learning rate: Tabular, counter based

Play-out policy: Pseudo-random



SAMPLING

UCT “searches” by sampling games from the 
current position

After each sample game, the value function is 
updated

The opponent model is updated too (self-play) 

Sampling trajectories to update the value fn 
and model is called Dyna (Sutton, 1990)



LEARNING ALGORITHM

UCT uses Monte-Carlo to update the value fn

Only the result of the game is used

TD learning updates the value function using 
data from all time-steps: bootstrapping

TD is usually more efficient than MC

MC is just a special case of TD (lambda = 1)



VALUE FUNCTION

UCT uses a (partial) tabular value function

The value of a state depends on the average 
result following that position

Most reinforcement learning algorithms use 
function approximation to represent value fn

The value function can be initialised to 
incorporate any prior knowledge



EXPLORATION

UCT explores by adding a bonus to the value

Each state counts how many times it is visited

The bonus at a state is a function of its counter

There are many other RL strategies based on 
exploration bonuses (e.g. Sutton’s Dyna+)

Exploration bonuses can use function 
approximation too!



Learning rate

UCT uses a learning rate at each state that is 
inversely proportion to its counter

This is optimal for stationary environments

However, the policy is non-stationary

Learning rate can also be adapted when using 
function approximation



Play-out policy

UCT uses a pseudo-random policy to play out 
games

This is required whenever UCT leaves its 
knowledge base

The play-out policy could be learned

But if function approximation is used, the 
agent never leaves its knowledge base 



A proposal: DYNalite

Search: by DYNA (sampling full trajectories)

Value function: LInear + Tabular + Ephemeral

Learning algorithm: TD learning 

Exploration: Linear + Tabular usage bonus

Learning rate: Linear + Tabular usage

Play out policy: none



Value function

Represent the value function as a linear 
combination of features

Tabular is just a special case of linear

Include states as features

Linear features provide generalisation

Tabular features provide asymptotic learning



EPHEMERALITY

UCT only forgets values due to memory limit

DynaLite chooses to forget weights

Each game old weights are forgotten and 
value function is initialised to learned value

Weights then correspond to the value of a 
feature in the current context



USAGE

UCT has a counter for each state tracking visits

DynaLite counts the usage of each feature

Exploration bonus and learning rate are linear 
functions of the usage



uct .v. dynalite

Advantages of UCT .v. DynaLite

Pseudo-random games are very fast

Step-size computation is simple and effective

Exploration bonus is simple and effective

Theoretical convergence guarantees under 
certain assumptions



uct .v. dynalite

Potential advantages of DynaLite .v. UCT

Can generalise between different positions

Never leaves its knowledge-base

Knowledge is transferred between moves

Can use bootstrapping (TD methods)

Scales better to larger boards


