
Monte-Carlo
Proof-Number Search

for Computer Go
Authors: Jahn-Takeshi Saito, Guillaume Chaslot,

Jos W.H.M. Uiterwijk, and H. Jaap van den Herik

Presenter: Philip Henderson

Monte-CarloProof-Number Searchfor Computer Go – p.1/15



Overview
Proof Number Search

MCPNS

Experimental Setup

Results and Analysis

Conclusions and Future Work

Monte-CarloProof-Number Searchfor Computer Go – p.2/15



Proof Number Search
Introduced by Allis at al. (1994)

Goal: to prove the value of a game

Solved Connect-4, Qubic, Go-Moku

Variants by Breuker, Nagai, Winands et al.

Applied to combinatorial games: shogi, go,
checkers

Monte-CarloProof-Number Searchfor Computer Go – p.3/15



PNS Details (1)

Most proving node: node which can
contribute the most to the establishment of
the root’s minimax value with the least
possible effort

At max nodes, select branch where likely to
prove value 1 with least effort

At min nodes, select branch where likely to
prove value 0 with least effort

Monte-CarloProof-Number Searchfor Computer Go – p.4/15



PNS Details (2)

At each node visited, store (proof number,
disproof number)

Final game states: win = (0,∞), loss = (∞, 0)

Temporary leaves: (1, 1) - assumes win/loss
have equal chance

Max internal nodes: (min proof number of
children, sum of disproof numbers of children)

Min internal nodes: (sum of proof numbers of
children, min disproof number of children)

Monte-CarloProof-Number Searchfor Computer Go – p.5/15



PNS Example

MIN

MAX

MAX

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



PNS Example

MIN

MAX

MAX

(1,1)(1,1) (1,1)(1,1)

(1,1) (1,1)(1,1)

(1,1)

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



PNS Example

MIN

MAX

MAX

(1,1)(1,1) (1,1)(1,1)

(1,1) (1,1)(1,1)

(1,1)

(1,3) (1,2)

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



PNS Example

MIN

MAX

MAX

(1,1)(1,1) (1,1)(1,1)

(1,1) (1,1)(1,1)

(1,1)

(1,3) (1,2)

(2,2) (3,1)

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



PNS Example

MIN

MAX

MAX

(1,1)(1,1) (1,1)(1,1)

(1,1) (1,1)(1,1)

(1,1)

(1,3) (1,2)

(2,2) (3,1)

(2,3)

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



PNS Example

MIN

MAX

MAX

(1,1)(1,1) (1,1)(1,1)

(1,1) (1,1)(1,1)

(1,1)

(1,3) (1,2)

(2,2) (3,1)

(2,3)

Monte-CarloProof-Number Searchfor Computer Go – p.6/15



MCPNS
PNS uses no domain-dependent information

For temporary leaves, win/loss are not always
equally likely

MC can provide us a better estimate of
win/loss likelihood

Use MC to give proof/disproof numbers in
range (0, 1] for temp leaves

Monte-CarloProof-Number Searchfor Computer Go – p.7/15



Tests
30 tsumego, 10k - 1d level from GoBase

Alive/dead categorization only (ko and seki
omitted)

All positions advantageous for Black (who
moves first)

Annotations added for which groups to be
decided and which intersections playable
(I ∈ [8, 20])

Monte-CarloProof-Number Searchfor Computer Go – p.8/15



MCPNS Parameters
N - number of simulated games ∈ (3, 5, 10, 20)

la - lookahead depth (max length of
gameplay) ∈ (3, 5, 10)

depth - level at which start using MC as a
guide ∈ (I, I/2, 3I/4)

Monte-CarloProof-Number Searchfor Computer Go – p.9/15



Additional Info
32 GB of working memory available

Implemented in C++

MANGO used for MC evaluation, no
adaptation for tsumego

Each test repeated 20 times, aggregates
analyzed

MCPNS variants compared with basic PNS

Monte-CarloProof-Number Searchfor Computer Go – p.10/15



Results
Fastest: pfast = (3, 10, 3) - twice as fast,
expands < 1/4 the nodes

Smallest: pnarrow = (20, 10, 3) - expands < 1/5
nodes, but a little slower than PNS

MCPNS variants expand fewer nodes than
PNS

Time required is more variable - PNS fastest
in 6 cases, tied for fastest in another 6

Monte-CarloProof-Number Searchfor Computer Go – p.11/15



Analysis

Tradeoff between number nodes expanded
and time spent per node

MC is time-costly, so use few of these

PNS fastest on simpler problems, but for
complex problems the absolute time savings
by MCPNS are significant: 47 seconds versus
6 seconds on most complex problem

Monte-CarloProof-Number Searchfor Computer Go – p.12/15



Conclusions
Added domain dependent info to PNS by
using MC

Fewer nodes expanded, but higher time cost
per node

Correct choice of parameters is faster for
more complex problems

Monte-CarloProof-Number Searchfor Computer Go – p.13/15



Future Work
Larger and more complex problem set needs
to be tested

Only aggregates analyzed, how large is
variance of MCPNS

Use this idea to extend Depth-First PNS

Monte-CarloProof-Number Searchfor Computer Go – p.14/15



Any Questions?

Monte-CarloProof-Number Searchfor Computer Go – p.15/15


	Overview
	Proof Number Search
	PNS Details (1)
	PNS Details (2)
	PNS Example
	MCPNS
	Tests
	MCPNS Parameters
	Additional Info
	Results
	Analysis
	Conclusions
	Future Work
	Any Questions?

