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Proof Number Search
Introduced by Allis at al. (1994)

Goal: to prove the value of a game

Solved Connect-4, Qubic, Go-Moku

Variants by Breuker, Nagai, Winands et al.

Applied to combinatorial games: shogi, go,
checkers
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PNS Details (1)

Most proving node: node which can
contribute the most to the establishment of
the root’s minimax value with the least
possible effort

At max nodes, select branch where likely to
prove value 1 with least effort

At min nodes, select branch where likely to
prove value 0 with least effort
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PNS Details (2)

At each node visited, store (proof number,
disproof number)

Final game states: win = (0,∞), loss = (∞, 0)

Temporary leaves: (1, 1) - assumes win/loss
have equal chance

Max internal nodes: (min proof number of
children, sum of disproof numbers of children)

Min internal nodes: (sum of proof numbers of
children, min disproof number of children)
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PNS Example
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MCPNS
PNS uses no domain-dependent information

For temporary leaves, win/loss are not always
equally likely

MC can provide us a better estimate of
win/loss likelihood

Use MC to give proof/disproof numbers in
range (0, 1] for temp leaves
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Tests
30 tsumego, 10k - 1d level from GoBase

Alive/dead categorization only (ko and seki
omitted)

All positions advantageous for Black (who
moves first)

Annotations added for which groups to be
decided and which intersections playable
(I ∈ [8, 20])
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MCPNS Parameters
N - number of simulated games ∈ (3, 5, 10, 20)

la - lookahead depth (max length of
gameplay) ∈ (3, 5, 10)

depth - level at which start using MC as a
guide ∈ (I, I/2, 3I/4)
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Additional Info
32 GB of working memory available

Implemented in C++

MANGO used for MC evaluation, no
adaptation for tsumego

Each test repeated 20 times, aggregates
analyzed

MCPNS variants compared with basic PNS

Monte-CarloProof-Number Searchfor Computer Go – p.10/15



Results
Fastest: pfast = (3, 10, 3) - twice as fast,
expands < 1/4 the nodes

Smallest: pnarrow = (20, 10, 3) - expands < 1/5
nodes, but a little slower than PNS

MCPNS variants expand fewer nodes than
PNS

Time required is more variable - PNS fastest
in 6 cases, tied for fastest in another 6
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Analysis

Tradeoff between number nodes expanded
and time spent per node

MC is time-costly, so use few of these

PNS fastest on simpler problems, but for
complex problems the absolute time savings
by MCPNS are significant: 47 seconds versus
6 seconds on most complex problem
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Conclusions
Added domain dependent info to PNS by
using MC

Fewer nodes expanded, but higher time cost
per node

Correct choice of parameters is faster for
more complex problems
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Future Work
Larger and more complex problem set needs
to be tested

Only aggregates analyzed, how large is
variance of MCPNS

Use this idea to extend Depth-First PNS
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Any Questions?
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