MONTE CARLO
PERMUTATION
SEARCH

TRISTAN CAZENAVE




OVERVIEW

e Move Selection: an existing Monte-
Carlo algorithm generates w moves

e Sequence Evaluation: a new Monte-
Carlo algorithm is used to evaluate
depth d sequences of these w moves

e Virtual Global Search: Alpha-beta
search is applied to evaluate the best
possible sequence



MOVE SELECTION

Uses previous work by Cazenave and
Helmstetter

Monte Carlo combined with tactical
search

Unlike previous paper, only connection
searches are used

The w moves with best evaluation are
selected for global evaluation



GOBBLE

All moves are considered to have a
static value, regardless of when played

Moves are ordered according to value

Many games are simulated using this
order, with some random variation

A move is assigned the mean score of
all games in which it is played



SEQUENCE EVALUATION

e All move sequences are considered to
have a static value, regardless of when
played, or in which order

e Many games are simulated using
random move selection

e A sequence is assigned the mean score
of all games in which it occurs (in any
order)



SEQUENCE EVALUATION

All possible depth d sequences are
evaluated (d=3 in most experiments)

Requires 2°"d memory (b bits for index)

In each random game, approximately
(w/2)4 sequences are matched

Each matching sequence is updated
incrementally (count and score)



VIRTUAL GLOBAL SEARCH

e Depth d alpha-beta search using w
moves chosen by move selection

e [eaves are evaluated according to the
value of the depth d sequence

 No need to actually play moves

e Instead just track the sequence index



VIRTUAL GLOBAL SEARCH

e Number of games required by standard

global search to have g games at each
leaf: 2gw(d/2)

e Number of games required by virtual
global search to have g random games
at each leaf: g*24

® Space complexity is linear for standard
global search, but w4 for virtual global
search



EXPERIMENTAL RESULTS

Table 1. Comparison of times for the fi rst move.

algorithm w d games time
standard 83 g=100 15.8s
virtual 83 g1 =800 0.3s
standard 163 g=100 118.2s
virtual 16 3 g1 =800 0.3s
virtual 81 3 g1 =800 0.6s




EXPERIMENTAL RESULTS

Table 2. Comparison of algorithms.

maxr wd g1 Y time min wd g time result won
virtual 8 3 2,000 0% 0.5s standard 8 3250 11.5s -3.3 42
virtual 8 3 8,000 0% 2.1s standard 8 3 100 7.2s 56 66
virtual 8 3 8,000 50% 2.2s standard 8 3 100 7.0s T S
virtual 16 3 8,000 50% 1.8s standard 8 3 100 6.4s 96 70
virtual 8 5 32,000 0% 13.1s standard 8 3 100 7.6s 10 73




EXPERIMENTAL RESULTS

Table 3. Results against gnugo 3.6.

mazx wd pre g % ttme mean o won
virtual 83 100 100 80% 0.4s -34427.6 4
virtual 83 1,000 1,000 80% 3.7s -26.627.7 10
virtual 81 1,000 4,000 80% 3.7s -17.7 28.6 16
virtual 8 3 16,000 2,000 80% 4.7s -16.123.1 17
virtual 8 3 1,000 10,000 80% 37.4s -14.4 28.5 31
standard 8 3 100 100 80% 3.3s -23.922.3 10
standard 8 1 1,000 4,000 80% 4.4s -17.324.7 16
standard 8 3 1,000 1,000 80% 23.6s -11.123.9 21




CONCLUSIONS

* Sequence permutations are ideal for
games such as Hex where moves
always permute

* In Go, moves don’t always permute but
this approach still gives good results

e Virtual global search requires O(29)
instead of O(wd9/2) simulations and
O(w4) instead of linear memory



