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Overview

• Move Selection: an existing Monte-
Carlo algorithm generates w moves

• Sequence Evaluation: a new Monte-
Carlo algorithm is used to evaluate 
depth d sequences of these w moves

• Virtual Global Search: Alpha-beta 
search is applied to evaluate the best 
possible sequence



Move Selection

• Uses previous work by Cazenave and 
Helmstetter

• Monte Carlo combined with tactical 
search

• Unlike previous paper, only connection 
searches are used

• The w moves with best evaluation are 
selected for global evaluation



Gobble

• All moves are considered to have a 
static value, regardless of when played

• Moves are ordered according to value

• Many games are simulated using this 
order, with some random variation

• A move is assigned the mean score of 
all games in which it is played



Sequence Evaluation

• All move sequences are considered to 
have a static value, regardless of when 
played, or in which order

• Many games are simulated using 
random move selection

• A sequence is assigned the mean score 
of all games in which it occurs (in any 
order)



Sequence Evaluation

• All possible depth d sequences are 
evaluated (d=3 in most experiments)

• Requires 2b*d memory (b bits for index)

• In each random game, approximately 
(w/2)d sequences are matched

• Each matching sequence is updated 
incrementally (count and score)



Virtual Global Search

• Depth d alpha-beta search using w 
moves chosen by move selection

• Leaves are evaluated according to the 
value of the depth d sequence

• No need to actually play moves

• Instead just track the sequence index



Virtual Global Search

• Number of games required by standard 
global search to have g games at each 
leaf: 2gw(d/2) 

• Number of games required by virtual 
global search to have g random games 
at each leaf: g*2d

• Space complexity is linear for standard 
global search, but wd for virtual global 
search



Experimental Results

Table 1. Comparison of times for the fi rst move.

8 3 = 100 15.8s

8 3 = 800 0.3s

16 3 = 100 118.2s

16 3 = 800 0.3s

81 3 = 800 0.6s

and fifty with white). The first column gives the name of the algorithm for the max

player. The second column gives the maximum number of global moves allowed for

max. The third column gives the maximum global depth for max. The fourth column

gives the total number of random games played before the virtual global search. The

fifth column gives the minimum percentage of the best move static evaluation required

to select a global move: a move is selected if its static evaluation is greater than the

static evaluation of the best move multiplied by the percentage. The sixth column gives

the average time used for virtual global search (including the random games). The next

columns give similar information for the min player. The last two columns give the

average score of the one hundred games for max, and the number of games won by max

out of the one hundred games.

For example the first line of table 2 shows that virtual global search, with width

eight, depth three, two thousand random games, all moves allowed, takes half a second

per move and loses against standard global search with similar settings. This experiment

shows that with equivalent precisions on the evaluation (here the number of games per

leaf for virtual global search is , the same as for standard global search), the

virtual global search takes twenty three times less time for an average loss of 3.3 points

per game.

The next lines test different options for virtual global search against a fixed version

of standard global search (one hundred games per leaf, width eight, depth three). A

depth three virtual global search, with at most sixteen global moves that have a static

evaluation which is at least half the best static evaluation, and eight thousand games

takes less than two seconds per move and wins by almost 10 points against a standard

global search that takes more than six seconds per move.

In these experiments the number of games used to select the moves to search is the

same as the number of games per leaf. In the next experiments, we have decorrelated

these two numbers.

Table 3 gives some results of one hundred games matches against gnugo 3.6. The

first column is the algorithm used for the max player, the second column the maximum

width of the search tree, the third column the depth, the fourth column is the number

of games played before the search in order to select the moves to try, the fourth column

is the number of games for each leaf of the search tree, then comes the minimum per-

centage of the best move used to select moves, the average time of the search per move,



Experimental Results

Table 2. Comparison of algorithms.

8 3 2,000 0% 0.5s 8 3 250 11.5s -3.3 42

8 3 8,000 0% 2.1s 8 3 100 7.2s 5.6 66

8 3 8,000 50% 2.2s 8 3 100 7.0s 7.2 75

16 3 8,000 50% 1.8s 8 3 100 6.4s 9.6 70

8 5 32,000 0% 13.1s 8 3 100 7.6s 10 73

the mean result of the one hundred games against gnugo 3.6, the associated standard

deviation, and the number of won games.

Table 3. Results against gnugo 3.6.

8 3 100 100 80% 0.4s -34.4 27.6 4

8 3 1,000 1,000 80% 3.7s -26.6 27.7 10

8 1 1,000 4,000 80% 3.7s -17.7 28.6 16

8 3 16,000 2,000 80% 4.7s -16.1 23.1 17

8 3 1,000 10,000 80% 37.4s -14.4 28.5 31

8 3 100 100 80% 3.3s -23.9 22.3 10

8 1 1,000 4,000 80% 4.4s -17.3 24.7 16

8 3 1,000 1,000 80% 23.6s -11.1 23.9 21

The best number of won games is thirty one for virtual global search with

( and ). However, the best mean is -11.1 for standard search

with and , but it only wins twenty one games. The two results for

depth one are close to a standard Monte-Carlo evaluation without global search. The

results show that more accuracy (4,000 games instead of 1,000) may be more important

in some cases than more depth when comparing lines two and three of the table.

A result of this table is that for the same number of games per leaf and for a depth

three search, standard search is better than virtual search. We do not know if it also

holds for deeper and wider searches, what are the asymptotic performances of the two

methods, and how the other parameters of the algorithms influence the results. This is

left for future work.



Experimental Results

Table 2. Comparison of algorithms.

8 3 2,000 0% 0.5s 8 3 250 11.5s -3.3 42

8 3 8,000 0% 2.1s 8 3 100 7.2s 5.6 66

8 3 8,000 50% 2.2s 8 3 100 7.0s 7.2 75

16 3 8,000 50% 1.8s 8 3 100 6.4s 9.6 70

8 5 32,000 0% 13.1s 8 3 100 7.6s 10 73

the mean result of the one hundred games against gnugo 3.6, the associated standard

deviation, and the number of won games.

Table 3. Results against gnugo 3.6.

8 3 100 100 80% 0.4s -34.4 27.6 4

8 3 1,000 1,000 80% 3.7s -26.6 27.7 10

8 1 1,000 4,000 80% 3.7s -17.7 28.6 16

8 3 16,000 2,000 80% 4.7s -16.1 23.1 17

8 3 1,000 10,000 80% 37.4s -14.4 28.5 31

8 3 100 100 80% 3.3s -23.9 22.3 10

8 1 1,000 4,000 80% 4.4s -17.3 24.7 16

8 3 1,000 1,000 80% 23.6s -11.1 23.9 21

The best number of won games is thirty one for virtual global search with

( and ). However, the best mean is -11.1 for standard search

with and , but it only wins twenty one games. The two results for

depth one are close to a standard Monte-Carlo evaluation without global search. The

results show that more accuracy (4,000 games instead of 1,000) may be more important

in some cases than more depth when comparing lines two and three of the table.

A result of this table is that for the same number of games per leaf and for a depth

three search, standard search is better than virtual search. We do not know if it also

holds for deeper and wider searches, what are the asymptotic performances of the two

methods, and how the other parameters of the algorithms influence the results. This is

left for future work.



Conclusions

• Sequence permutations are ideal for 
games such as Hex where moves 
always permute

• In Go, moves don’t always permute but 
this approach still gives good results

• Virtual global search requires O(2d) 
instead of O(wd/2) simulations and       
O(wd) instead of linear memory


