The Economist's View of Combinatorial Games

Author: Elwyn Berlekamp

Presenter: Philip Henderson

ph@cs.ualberta.ca

Overview

- Combinatorial Game Theory
- Goal and Motivation
- Economic Rules and Sentestrat
- Komaster and Extending Thermographs
- Approximations and Forecasting

Combinatorial Game Theory (CGT)

Game assumptions:

- Two players (Left and Right) alternate turns
- Finite
- No elements of chance
- No hidden information
- No draws, ties
- Normal play: last player with legal move wins

CGT Motivation

- Determining the value of a game under optimal play
- Determining the value of different moves
- Solving the sum of independent subgames

Game Notation

Game $G = \{G^L | G^R\}$

- Game defined by Left and Right options
- Positive values favour Left, negative favour Right
- Zero is second-player win, fuzzy is first-player win

Extension of Numbers

Numeric games: $G^L < G < G^R$

- $ullet 0 = \{|\}$, any second-player win is equivalent
- $\blacksquare 1 = \{0|\}, \dots, n = \{n-1|\}$
- $-G = \{-G^R | -G^L\}$, reverse roles
- \bullet {0|1} = 1/2, {0|1/2} = 1/4,...

Non-Numeric Values

- $= * = \{0|0\}$, simplest fuzzy game
- $\blacksquare \pm x = \{x \mid -x\}$ (switches)

Further Concepts

Sums of Independent Subgames:

$$G = \{G^L | G^R\}, H = \{H^L | H^R\} \Rightarrow$$

 $G + H = \{G^L + H, G + H^L | G^R + H, G + H^R\}$

Incentives:

$$\Delta^{L}(G) = G^{L} - G$$
$$\Delta^{R}(G) = G - G^{R}$$

Thermographs

Motivation for New Approach

Goal: Extend computation of thermographs to handle positions containing kos

- Game positions no longer form a DAG
- Will not deal with interdependent kos (i.e. triple ko)

Economist's Rules

Initial Setup:

- Bid for roles in each subgame
- Bid for privilege of first move
- Taxation payment to opponent for making move

Player's Move:

- Pay and Play, or
- Pass

Economist's Rules

Game Transitions:

- Both pass ⇒ New bid on taxation (must decrease)
- Higher bid plays next, alternate if tie
- lacksquare Game ends when neither willing to bid $\geq t_{min}$
- Zero-sum game, wealth determines victory

Sentestrat

Bidding:

- Use mean for Left player bid
- Use temperature for tax/first move bid

Playing:

- If opponent increases temp, respond locally
- If temp ≥ tax, play in subgame of max temp
- If temp < tax, pass

Sentestrat Analysis

- If both players use Sentestrat, then bids always tie and play alternates
- Theorem: Sentestrat is optimal under Economist's Rules

Subzero Temperatures

- $t_{min} = -1$, opponent pays you to play
- Mathematized go rules: groups become immortal, fill-in own territory

Initial Bids:

Player 1: pays 2 to play

Black in Go

Player 1: pays 1 to play

Vertical in Domineering

Player 2: pays 3/2 to

play first

Game	Mean	Temp
Go	2 1/32	1 15/32
Dom	3/4	1 1/8

Game	Mean	Temp
Go	9/16	1 1/16
Dom	3/4	1 1/8

Game	Mean	Temp
Go	9/16	1 1/16
Dom	1 7/8	1 1/8

Game	Mean	Temp
Go	9/16	1 1/16
Dom	11/16	1 3/16

Game	Mean	Temp
Go	9/16	1 1/16
Dom	1 7/8	1 1/8

Game	Mean	Temp
Go	9/16	1 1/16
Dom	3/4	1

Game	Mean	Temp
Go	1 5/8	7/8
Dom	7/8	1 1/8

Game	Mean	Temp
Go	3	0
Dom	-1	-1/2

Game	Mean	Temp
Go	3	0
Dom	-1	-1/2

Game	Mean	Temp
Go	3	-1
Dom	-1	-1/2

Game	Mean	Temp
Go	3	-1
Dom	-1/2	-1/2

Game	Mean	Temp
Go	3	-1
Dom	-1	-1

Game	Mean	Temp
Go	3	-1
Dom	0	-1

Game	Mean	Temp
Go	3	-1
Dom	-1	-1

Thermography

Classical:

- No loops (i.e. kos)
- Hill region at bottom, infinite mast at top

Goal: Extend to simple kos

Economist Ko Rules

- Komaster is player who will win ko fight (if chooses to play it)
- Repeat positions not disallowed, but is critical ko if Komaster causes repeat
- Immediately after creating a critical ko, the Komaster is forced to play a local move

Results:

- Komaster is forced to win ko fight if plays it
- This is never disadvantageous

Computing the Thermograph

Left and Right Scaffolds:

- LS $G_t = -t + max_{G^L}$ (Right wall of G_t^L)
- \blacksquare RS $G_t = +t + min_{G^L}$ (Left wall of G_t^R)

Left and Right Walls:

- If LS ≥ RS (hill region), same as scaffolds
- If LS < RS (cave region), LW = RW = mast
- Intermediate masts may not be vertical

Thermograph Properties

- Initial temperature
- Active/Dormant
- Activation temperature

Computing Ko Thermographs

$$G = \{V|W, H\},$$

$$H = \{G, X|Y\}$$

$$\tilde{G} = \{V|W\},$$

$$\hat{H} = \{\tilde{G}, X|Y\},$$

$$\hat{G} = \{V|W, \hat{H}\}$$

Creates a DAG based on who is Komaster

Thousand-Year Ko

More Thermograph Construction

- Given thermographs for A and B, can construct thermograph for $\{A|B\}$
- Given thermographs for A and B, cannot construct thermograph for A + B
- Means (infinite masts) add
- Many positions not relevant, top-down computation may be better

Position Stability

- Stable: ancestors have higher temperatures
- Unstable: some ancestor has a lower temperature
- Semi-stable: some ancestor has same temperature, none have lower

Tradeoff:

- Handling semi-stable as stable is simpler and more efficient
- Handling it as unstable allows more precise calculation of infinitesimal values

Position Frequency

Given n copies of a position, as $n \to \infty$:

- Mainline: position appears infinite number of times
- Sideline: position frequency is bounded

Mainline positions provide a good approximation of the game value in rich environments

Mainline/Sideline Example

Other Strategies

- Hotstrat pick subgame with maximum temperature
- Thermostrat pick subgame with widest hill at current temperature

Theorem: Thermostrat also optimal for Economist's rules

Observation: Thermostrat can exploit weaker opponents better than Sentestrat

Economic Forecasting

- Estimate value using mean, adjusting for first player using half of current temperature
- Refine estimate with each temperature drop
- Beneficial to make the last move at the higher temperature
- **E**stimates reasonable, error bounded by t/2

Conclusion

- Introduced concept of Komaster
- Extended thermographs to include basic kos
- Strategy to play optimally using thermographs (Economist rules)
- Ideas for more efficient construction of thermographs
- Refined estimates (forecasting)

Any Questions?