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Abstract

The current global selective search and decomposition search in Go typically back up

territory scores. This approach is inherently flawed. We propose a new strategy of back-

ing up ‘‘chance of winning’’. We show how an evaluation function on the chance of win-

ning can be constructed. Also we develop a probabilistic combinatorial game model and

an algorithm for decomposition search to work with probabilistic outcomes in maximiz-

ing the chance of winning.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Due to the difficulty of its positional understanding by a machine and its

high branching factor, Go is generally regarded as a most challenging game

to program.

Global selective search [3–5] is an effective approach to deal with the intrin-

sic difficulties of Go. Many Go programs use this strategy for move selection
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decisions [7]. The evaluation functions for the global selective search have al-

most always been territory score based [4,14], i.e. they estimate the territory

score or expected territory score. The global search tries to maximize this (ex-

pected) territory score. If the program were involved in a dollar a point gam-

bling match, this kind of score evaluation strategy would make sense. But in a

tournament play, the reward of a Go match depends on win/loss outcome only,
regardless by how many points. Winning by one point is just as good as win-

ning by one hundred points. Thus, programs should maximize the probability

of winning [10]. We propose that a position evaluation function should evalu-

ate the chance of winning rather than territory score and that the global search

should mini–max the chance of winning. For example, in Fig. 1, taken from a

computer Go tournament match, Black should play at point ‘‘b’’ to make sure

the Black group at the left hand side of the board will survive, which essentially

guarantees a win for Black, since it already has about 20 points lead over
White. But the author�s program Go Intellect, based on territory score evalu-

ation in a global selective search, decided to play at point ‘‘a’’, which seemed to

be able to generate more territory within the search horizon. Eventually the

critical group was killed and the game was lost.

Human players make move decisions based on the chance of winning all the

time. For example, when we are ahead, we will reduce the uncertainty by

avoiding invasion and fighting moves. But a territory score evaluation based
Fig. 1. A tournament game at a FOST Cup Computer Go Championship.
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program will easily make a strategic mistake, when it is already comfortably

ahead, by invading into the opponent�s territory since the territory evaluation

after the invasion may appear that the opponent�s territory is drastically

reduced.

In Sections 2–5, we develop an evaluation function estimating the probabil-

ity of winning to be used by global selective search based Go programs in find-
ing the move offering the best chance of winning.

Decomposition Search [13] and Soft Decomposition Search [8,9] use terri-

tory evaluation scores of the component games to find an optimal move based

on Combinatorial Game Theory. In Section 6, we propose a new ‘‘Probabilistic

Combinatorial Games’’ model, which can deal with probabilistic outcome dis-

tributions of the component games. And we describe an algorithm for playing

such probabilistic combinatorial games to maximize the chance of winning. In

Section 7, we present the conclusion.
2. Expected territory vs. chance of winning

We shall illustrate the difference between the expected territory and the

chance of winning. Let us assume there are k groups on the board. For

i = 1, 2, . . . , k, group i probability pi to live and has a territory effect Ai, which

includes the group�s area plus half of the neutral surrounding area and Ai is
negative if it is of the opponent�s color. If there is no other territory to compete

and fates of all groups are independent, which are, of course, rather strong

assumptions, then the expected territory for us is

EA ¼
Xk

i¼1

½ðpi � AiÞ þ ð1� piÞ � ð�AiÞ� ¼
Xk

i¼1

ð2pi � 1Þ � Ai

This value is easy to compute. Most evaluation functions for global search

in Go more or less return this type of expected territory score. The chance of

winning, on the other hand, is calculated as the sum of all probabilities of po-

sitive outcomes: EW ¼
P

fq1q2 . . . qkj
Pk

i¼1A
0
i > 0, for each I = 1, 2, . . . , k: qi is

either pi or 1�pi, and (A0
i is Ai if qi = pi; otherwise A0

i is �Ai)}.

This is quite different from EA. Since most groups are safe, i.e. pi = 1 for
most i = 1, 2, . . . , k, we do not need to calculate the products q1q2 . . . qk with

qi = 1 � pi = 0. Instead of 2k products to compute and add, there are really only

2k1 products to add where k1 is the number of unsettled groups. So, the com-

putation is not as bad as it first appears.

In addition to groups on the board, there are almost always some no man�s
lands to compete and the boundaries of the groups can change. A Go program

makes territory estimate taking into account, an estimation on no-man�s land
based on influence values. Fig. 2 is an example of territory estimation by Go



Fig. 2. Territory estimation by Go Intellect. 64 is used as a unit representing full ownership. Dark

circles represent Black�s territory and light circles represent White�s territory, except those circles

marked by triangles representing dead stones. Stones marked by triangles are considered dead; they

completely belong to the opponent. Numbers less than 64 mean partial ownership of the points.

Circles appear at stones as well as some empty points.
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Intellect. The number 64 on a grid point means complete control of the point

by the color shown. A number less than 64 represents partial ownership. The

estimate comes from the sum of all individual point estimates, adjusted by
the presence of good and bad features and the komi, where the komi is a pre-

determined number of points to be deducted from the first player, Black, for

balancing the advantage of initiative.

Our heuristic estimate of the chance of winning should also take no-man�s
land into consideration. In Section 3, we shall discuss probability of winning

when there are no unsettled groups on the board. In Section 4, we deal with

the case when there are unsettled groups on the board.
3. All groups are safe

In this case, the territory score S ¼ EA ¼
Pk

i¼1Ai is a good prediction of the

outcome of the game when it is close to the end of the game, especially when S

is large. It is less reliable, when the game is far away from the end—there are

too many no man�s lands to compete and group boundaries may change. The

number of moves played so far is not a good estimator on how close it is to the
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game end, because the total number of moves in a Go game usually varies from

100+ to 300+. We have found that the total number of frontier space points of

all groups is a good indicator on how close it is to the game end. A space point

of a group is called a frontier space point if it is adjacent to a point not in the

same group [2,11]. Frontier space points indicate that group boundaries are not

finalized. Fig. 3 shows the frontier space points, which are marked by X. There
are a total of 55 frontier space points on the board, which indicates it is still far

away from the game�s end. The board configuration is the actual continuation

from Fig. 1 at a FOST Cup competition. Black now suffered bad consequence

from the earlier strategic mistake, which could easily have been avoided by

using the chance of winning evaluations in global search.

The total number of frontier space points is 0 at the beginning, since there

are no groups on the empty board. It gradually increases and peaks in mid-

game, then gradually decreases to 0 toward the end of the game. When there
are only dummy points left on the board, all space points of groups are com-

pletely surrounded by their stones and there will be no frontier space points. At

that stage, the game has practically ended. Based on the analysis of 36 recent

computer Go tournament game records, we have found that it usually takes

about 2–4 moves (plies) to reduce a frontier space. After about move 100,

the number of moves needed to reach the practical end of the game is roughly

three times total number of frontier space points. Let S = EA, F = the total
Fig. 3. Frontier space points are marked by X�s.
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number of frontier space points, and M = number of moves played by both

sides so far. Then the chance of winning EW can roughly be estimated as

follows.

if (M < 100) {

if (S > 60 + (100 � M)/4)EW = 1;
else if (S < �60 � (100 � M)/4)EW = 0;

else EW = 0.5 + S/(60 + (100 �M)/4) * 0.5;

}

else {

if (S > F)EW = 1;

else if (S < �F)EW = 0;

else EW = 0.5 * (1 + S/F)

}

The average number of frontier spaces at move 100 is about 60, so we do not

expect big shift in the value of EW from move 99 to move 100. We use

EW(S,F,M), or simply EW(S), to denote the EW as determined by the above

simple linear approximation. For example, if the game has played 130 moves,

and there are 40 frontier space points, and the score estimate is 20 ahead in our

favor, then EW (20, 40, 130) = 0.75. Our chance of winning is estimated to be

75%. This estimate is for computer programs, in particular for the author�s
program Go Intellect. For human experts, 20-point lead at move 130 would

mean almost a sure win.
4. Existence of unsafe groups

Usually there are some unsafe group on the board during opening and mid-

game. Assume that among all groups on the board, {Giji = 1, 2, . . . , k}, the first
k1 groups are safe and the last k�k1 groups are unsafe. Then the pessimistic

evaluation can be defined as Sp ¼
Pk1

i¼1Ai �
Pk

i¼kþ1jAij, assuming all our unsafe

groups will be dead and all opponent�s unsafe groups will be alive. Similarly,

we define optimistic evaluation to be S0 ¼
Pk1

i¼1Ai þ
Pk

i¼kþ1jAij. The actual out-
come should be in between pessimistic evaluation and optimistic evaluation. If

we backup Sp in look-ahead search, the program will play very conservatively.

On the other hand, If we backup S0 in look-ahead search, the program will

play very aggressively. Michael Reiss� program Go4++ seems to use the strat-
egy of maximizing Sp. Since it uses this strategy from the beginning of the

game, it works well with the program�s superior territory surrounding capabil-

ities. When Sp is positive or near positive, it is a good strategy to maximize Sp,

which guarantees winning. When S0 is negative or near negative, it is a good

strategy to maximize S0, which represents the only chance of winning. Backing
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up the average of Sp and S0 is kind like backing up the expected territory,

which is flawed. In the next section, we propose to analyze possible outcomes

of battles of unsafe groups as the base of chance of winning evaluation.
5. Battles

We shall ignore unsafe groups with values less than what a passive territory-

surrounding move can gain; we treat them as abandoned stones. If there is a

valuable group that is unsafe, then the transitive closure of adjacent unsafe

groups of both colors form a battle [8,9]. Fig. 4 shows a battle.

The fates of the groups in a battle are obviously mutually dependent. The

outcome of a battle frequently decides the win or loss of the whole game. So

we opt to evaluate the whole board instead of individual groups. The best out-
come for us is that all our unsafe groups become safe and all the opponent�s
unsafe groups become dead. The worst outcome is that all unsafe groups in

the battle become opponent�s territory. Usually there are many in-between out-

comes. Assume there is a probability pi for outcome score Si for i = 1, 2, . . . , n
(
Pn

i¼1pi ¼ 1). Then the chance of winning is heuristically estimated to bePn
i¼1pi � EWðSiÞ. On a rare occasion, there are multiple, simultaneous battles.
Fig. 4. The Black group marked by squares and the White group marked by small circles form the

main battle of the game configuration. The White stones marked by triangles are considered

abandon stones.
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Then we have to take into account what will happen if the opponent gets ini-

tiative in a battle as well. The global selective tree search model is no longer

adequate in this case [6]. To handle that type situations adequately, we need

a probabilistic combinatorial game model and meta-search for selecting the

move offering the best chance of winning, which we shall present in the next

section.
6. Probabilistic combinatorial game (PCG) model and the meta-search technique

Let us define an outcome distribution as a finite set of ordered pairs of the

form (S,p), where S is an integer score and p is the probability that score S will

be the result, 0 < p < = 1, such that the sum of all the p�s equals 1, i.e. an out-

come distribution D = {(Si,pi)jSi 2 I, 0 < pi < = 1, and
Pn

i¼1pi ¼ 1}. Next we
define probabilistic combinatorial games recursively as follows:

1. An outcome distribution is a PCG.

2. A sum of PCGs is a PCG.

3. {A1, A2, . . . , AnjB1, B2, . . . , Bm} is a PCG if A1, A2, . . . , An, B1, B2, . . . , Bm

are PCGs. A1, A2, . . . , An are called the Left options and B1, B2, . . . Bm are

called the Right options, just like in the ordinary combinatorial games.

Intuitively, we can think of a PCG in the following way: the playing rules

are the same as in ordinary combinatorial games [1] except when a sub-game

reaches an outcome distribution, dice will be thrown to select an outcome of

the sub-game according to the probability distribution. And the game contin-

ues with the outcome of this sub-game known to both sides. If the final total

outcome scores of all component sub-games is positive, it is a win for Left,

otherwise it is a win for Right.

In Go, after decomposition [12,13] or soft-decomposition [8,9], each battle
and other local component game can be represented by a component PCG,

Gi, and the whole game is represented by G ¼
Pn

i¼1Gi assuming that there

are n sub-games. If, for each outcome distribution D = {(Si,pi)jSi 2 I,

0 < pi < = 1, and
Pn

i¼1pi ¼ 1g, we use e ¼
Pn

i¼1pi � Si to replace D in G, then

we get an ordinary combinatorial game model. We can use the following com-

plete Meta-search to find the move that will produce the highest expected ter-

ritory score, with k representing the score of the settled portion of the game.

int ExpectedScore (
Pn

i¼1Gi, k, toPlay, bestMove) {

bestMove = Empty;

if (n = 0) return k;

else if (none of Gi is a number) {
if (toPlay = L) {
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bestMove = the move s.t. ExpectedScore (
P

j=iGj + GL
i , k, R, bM) is

max;

return max (ExpectedScore (
P

j!=iGzj+G
L
i , k, R, bM));

}

else {

bestMove = the move s.t. ExpectedScore (
P

j!=iGj + GR
i ,k, L, bM) is min;

return min (ExpectedScore (
P

j!=iGj+G
R
i , k, L, bM));�

}

}

else

return ExpectedScore (
P

j!=iGj, k + ki, toPlay, bestMove); // Gi is the first

number in G.

}

The above function procedure will maximize the expected score. Hence, if

we play for a dollar per point, this is the procedure to use. As discussed earlier,

in a normal tournament setting, we want to maximize the chance of winning.

We can use the following recursive procedure to achieve the optimal chance

of winning. We assume that there are no outcome distributions at the top level.

We will use k to represent the score of the settled portion of the game. The fol-

lowing meta-search procedure finds the optimal move that has the best chance
of winning and returns its winning chance.

float WinningProbability (
Pn

i¼1Gi, k, toPlay, bestMove) {

bestMove = Empty;

if (
Pn

i¼1Gi ¼ /) {

if (k > 0) return 1;

else return 0;

}
else if (none of Gi is an outcome distribution) {

if (toPlay = L) { P

bestMove = the move s.t. WinningProbability ( j!=iGj + GL

i , k, R, bM)

is max;

return max (WinningProbability (
P

j!=iGj + GL
i , k, R, bM));

}

else {

bestMove = the move s.t. WinningProbability (
P

j!=iGj + GR
i , k, L, bM)

is min;

return min (WinningProbability (
P

j!=iGj + GR
i , k, L, bM));

}

}

else
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return
Pm

l¼1pl *WinningProbability (
P

j!=iGj, k + Sl, toPlay, bestMove); //

Gi = {(Sl,pl)jl = 1, 2, . . . , m} is the first outcome distribution in G.

}

7. Lessons learned from implementation and testing

The above strategy of evaluating the chance of winning is valid for games

that count scores in deciding the winner, and have uncertainty involved in

the score counting for non-terminal positions, such as Go, Amazon, Domi-

neering, . . . etc. The global evaluation function for the probability of winning

has been implemented in an experimental version of Go Intellect. The result

is mixed. It works fine when there are no battles on the board. But when there
are one or more battles on the board, the probabilities pi and the corresponding

outcomes scores Si are difficult to be estimated with good accuracies by the ma-

chine. In this case, the experimental version of Go Intellect had a slightly infe-

rior performance than the regular version Go Intellect, which estimates the

territory scores. The problem was that the evaluation function for the proba-

bility of winning was not good enough when there are unsettled groups on

the board. More thorough knowledge engineering and implementation will

be needed to take the advantage of this approach of maximizing the chance
of winning. In Go, features that are easy to compute by machine, such as num-

ber of liberties of a block, or Manhattan distance of a stone to a safe friendly

group, generally have less impact to the final outcome of a game; features more

closely associated to the final outcome of a game, such as probability of win-

ning, or result of a battle, tend to be elusive and hard for the machine to grasp.

Significant research effort will be needed to find a good handle on estimating

the chance of winning and the probability distribution of outcomes.

Instead of using an evaluation function returning the probability of winning
directly, we have found the following two techniques using the probability of

winning indirectly to be very beneficial to a Go program which is based on glo-

bal search for maximizing the (expected) territory-score.

Technique I. Dynamic modification of weights on some move generators—

when the probability of the winning estimate is high, reduce the weights of at-

tack and invade routines, and increase the weights on protect group and pro-

tect territory routines; when the probability of winning estimate is low, do the

reverse.
Technique II. Adjust territory evaluations by the probability of winning esti-

mate. For example, if the chance of winning is >99%, add 10 points to the ter-

ritory score in the evaluation function, and if the chance of winning is <1%,

subtract 10 points from the territory score. This can avoid some of the pitfalls

of territory based global search. A smooth way to adjust territory evaluation



K.-H. Chen / Information Sciences xxx (2004) xxx–xxx 11

ARTICLE IN PRESS
may be by adding (probability of winning—0.5) * k for some constant k

depending on how confident the program is on its probability of winning

estimate.

Implementation of the above two heuristic techniques has incrementally im-

proved the performance of the program.

Since the evaluation function value for Go will have significant inaccuracy,
whether we evaluate territory, or chance of winning, or something else linked

to the outcome of the game, we need to find an alternative strategy to mini-max

for searching Go game tree effectively before a breakthrough in the playing

strength of Go programs can happen.
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