
Game-SAT: A Preliminary Report

Ling Zhao and Martin Müller

Department of Computing Science
University of Alberta

Edmonton, Canada T6G 2E8
{zhao, mmueller}@cs.ualberta.ca

Abstract. Game-SAT is a 2-player version of SAT where two players (MAX and MIN)
play on a SAT instance by alternatively selecting a variable and assigning it a value true or
false. MAX tries to make the formula true, while MIN tries to make it false. The Game-SAT
problem is to determine the winner of a SAT instance under the rules above, assuming the
perfect play by both players. The Game-SAT problem, originally derived from an application
in adversarial planning, is PSPACE-complete. The problem is similar to QBF, but differs by
the property of free variable selection, compared to QBF with its fixed variable ordering.
We have developed a Game-SAT solver, Gasaso, that uses a combination of standard game
tree search techniques, search methods that are well known in the SAT community, and
specialized pruning techniques. We show empirically how the solver performs in this new
domain, and give evidence for the existence of phase transitions in this problem.
Keywords: Game-SAT, heuristic search, empirical study

1 Introduction

In this paper, we introduce the Game-SAT problem, which is a 2-player version of SAT. Two
players (MAX and MIN) play on a SAT instance by alternatively assigning a value of their choice,
true or false, to an unused variable. MAX wins if and only if the formula is true after all variables
have been assigned values. The Game-SAT problem is to determine the winner of a SAT instance
assuming the perfect play by both players under the rules above. We call a Game-SAT instance
satisfiable if MAX wins the game, and it is unsatisfiable when MIN wins. There is no draw in
Game-SAT.

For example, the formula (1) given below is a Game-SAT instance in CNF, and interestingly,
the second player (whether MAX or MIN) can always win the game since after any first move the
formula simplifies to a single literal.

(V1 ∨ V2) ∧ (V1 ∨ V2) (1)

V1 ∧ (V2 ∨ V3) ∧ (V3 ∨ V4) (2)

Let’s see how to play a game on formula (2). If MAX plays first, it has to assign V1 true to
avoid an immediate loss. Next, MIN can set V2 false and forces MAX to set V3 true. Finally, MIN
can make the formula false by assigning V4 false. As a result, MIN wins the game.

In [1], Schaefer introduced a large number of different games played on propositional formu-
las. Interestingly, Game-SAT itself is not among these games, but several simplified versions are.
Schaefer’s game Gpos(POS CNF) is a simplified version of Game-SAT where literals in each clause
are non-negated. Schaefer’s Gω(CNF) is the version where the order of variables to be assigned is
fixed. This game is equivalent to QBF. The Game-SAT problem is PSPACE-complete, since its
special case Gpos(POS CNF) is PSPACE-complete [1] and this problem obviously can be solved in
polynomial space.

Our interest in Game-SAT originated from our efforts to develop a formal model for expressing
the dependency of subgoals in adversarial planning. In this model, an atomic goal that can be
achieved or foiled by one player is represented by a Boolean variable. Complex goals are expressed
as Boolean formulas over these variables. The dependency between different subgoals is modeled
by their shared variables.

Game-SAT shares many similarities with both SAT and QBF. If the two players in Game-SAT
cooperate instead of competing with each other, then Game-SAT becomes SAT. Game-SAT has

358 Ling Zhao and Martin Müller

the same complexity as QBF, since they can be reduced to each other in polynomial time. Besides,
many methods used in SAT or QBF solvers can be applied to Game-SAT.

Game-SAT also has its distinct characteristics. Compared to QBF, Game-SAT provides free
choice among all unassigned variables. This property leads to a much larger branching factor
compared to QBF, at least in a brute-force search. We have not found any methods to convert
between QBF and Game-SAT without introducing an enormous blow-up of the number of variables
and clauses. This seems to indicate that Game-SAT can be a useful simple domain to which other
problems can be reduced. Game-SAT is also a perfect-information two-player game, so search
algorithms that have been successful in games research can be applied to this problem.

We employed both heuristic search algorithms and standard approaches effective in solving
QBF or SAT problems, and incorporated them into Gasaso, a Game-SAT solver.

The remaining sections are organized as follows: Section 2 gives details about solving methods
for Game-SAT. Section 3 contains experimental results regarding the improvements from those
methods, and gives empirical evidence for the existence of phase transitions in Game-SAT. Finally,
Section 4 contains conclusions and future work.

2 A Game-SAT Solver

Gasaso is a Game-SAT solver we built to experiment with different solving techniques. Gasaso

is based on traditional minimax search, and incorporates many search enhancements that have
been successfully applied in game-playing programs, SAT and QBF solvers. Gasaso is a complete
Game-SAT solver - it can solve any given instance given enough time and resources.

We used randomly generated CNF formulas as our test cases. More information about the
random instance generator is given in Section 3.1. Since any Game-SAT instance represented as
CNF can be transformed to another Game-SAT instance in DNF, without loss of generality, we
assume all instances mentioned in this paper are in CNF. For brevity, we also assume that literals
within a clause do not share variables.

In the following, we give details about those search techniques that have improved the perfor-
mance of our solver significantly, as well as those that did not work and our explanations.

2.1 Move ordering

At each move a Game-SAT player has to choose a variable and its Boolean value. With n variables,
the branching factor of a brute-force search is 2n. A good move ordering algorithm in Game-SAT
leads to pruning large parts of the search tree, and helps to approach the minimal tree for solving
the instance. However, there is a tradeoff between speed and pruning power.

In Game-SAT, a move is defined as assigning a literal the value true. The corresponding variable
is set to true for a positive literal and to false for a negative literal. A simple frequency heuristic
weighs moves using the following formulas, where Freq(l) is the number of occurrences of literal l

in the instance. Moves are sorted and tried in descending order of their values.

MAX to play: V alue(l) = Freq(l) − Freq(l)
MIN to play: V alue(l) = Freq(l) − Freq(l)

The history heuristic, originally invented for Chess programs [2] is based on the observation that
a move frequently leading to the best minimax score in different game states is likely to be a good
move in other game states as well. Let HistFreq(l) be the number of times move l achieved the
best minimax score for the current player. Moves are weighed according to the following formulas:

MAX to play: V alue(l) = α ∗ HistFreq(l) + Freq(l) − Freq(l)
MIN to play: V alue(l) = α ∗ HistFreq(l) + Freq(l) − Freq(l)

The history heuristic performs best when used together with frequency heuristic. In the formula,
α is a large constant (α = 256 in our experiments) such that at the beginning, the solver mainly
uses the frequency heuristic for move ordering. As the history of moves accumulates, the history
heuristic quickly becomes the dominating factor.

Game-SAT: A Preliminary Report 359

2.2 Transposition table

Since in Game-SAT the order of variable selection is not fixed, the same partially assigned formula
(corresponding to a search state) can be reached through different move sequences during the
search. For example, a sequence of moves (V1, V2, V3) is equivalent to (V3, V1, V2). As a result, it is
useful to determine these transpositions and to retrieve the previous result from a cache to avoid
redundant computation.

2.3 Unit propagation

Unit propagation is a crucial enhancement in SAT solvers, and this technique is also applicable
to Game-SAT. If an instance contains a single-literal clause L1 ∧ (. . .) and it is MAX to play,
MAX is forced to assign L1 true to avoid an immediate loss. If MIN has a big advantage and the
move ordering is good, MIN may be able to follow up with similar forcing moves, a chain of unit
propagations leading to a quick proof of a win for MIN.

2.4 Static evaluation

Static evaluation determines the result of a partially assigned instance without search. Gasaso uses
the following static rules:

1. Single-literal clause for MIN: MIN to play wins if an instance contains a single-literal clause.
2. Double single-literal clause: MIN wins if an instance has two single-literal clauses that share

no variables. Note this case is also covered by a combination of the previous rule and unit
propagation.

3. Single-clause instance: if an instance contains only one clause, then its result can be determined
by simply checking the size of the clause. This rule does not contribute any speedup as it only
reduces the search depth by 1 and prunes an insignificant portion of the search space.

2.5 Instance simplification

Instances can be simplified by removing clauses that will not influence the game result. For example,
a clause can be removed if one of its literals is assigned true.

Another important simplification rule concerns singleton variables that occur only once in an
instance. Any clause containing two singleton variables can be safely removed from the instance,
since MAX can always make the clause true even as the second player, without changing the state
of the rest of the instance.

2.6 Move reduction

Instance simplification may result in unassigned variables that no longer occur in the instance, and
we call them unused variables. Unlike SAT, such unused variables can actually change the game
results. If the rest of an instance is a second-player-win, an unused variable to play changes the
game into a first-player win. However, we do not need to generate all moves for unused variables,
since they are only helpful for second-player-win scenarios. We used the following rules to reduce
moves generated from these variables.

1. An even number of unused variables is equivalent to no unused variables in the instance, and
no moves need to be generated from them.

2. An odd number of unused variables is equivalent to 1 unused variable in the instance. Since all
moves generated from unused variables are equivalent, only one is generated.

3. The unused variable move always has the lowest priority.

Our final move reduction scheme is dominated move reduction. If the result of playing move B

is at least as good as that of playing A, move A is dominated by move B and pruned. For example,
if an variable only occurs in positive form, then for MAX, setting it true dominates setting it false.
Similar rules are used for MIN to play, and for variables occurring only in negative forms.

360 Ling Zhao and Martin Müller

2.7 Iterative deepening

Although iterative-deepening [3] search is very successful in many game-playing programs, it fails
miserably in Game-SAT compared to normal depth-first minimax search. We believe that our move
ordering does well in guiding a depth-first search to quickly explore a small search tree to determine
game results. The major disadvantage of iterative deepening is that it has to perform a complete
search if the depth limit of an iteration is smaller than the minimum depth required to solve the
instance. Thus, a huge number of nodes that need not be searched in the normal depth-first search
may be explored in iterative-deepening search.

3 Experimental results and analysis

This section presents experimental results on randomly generated instances, which empirically mea-
sure the effectiveness of each search enhancement. We also show the existence of phase transitions
in Game-SAT random instances.

3.1 Setup of Experiments

We used the well-known fixed clause model to generate random Game-SAT instances. Each clause
contains a fixed number of different variables, and each variable is negated with probability 1/2.
No two clauses are identical, and each variable must occur at least once in the instance.

The solver Gasaso was written in C++, compiled by g++ 3.2.2. Experiments were conducted
under Linux on a machine with a 1.6GHz Pentium-M CPU and 512M memory.

3.2 Comparisons of search methods and enhancements

For the following 7 interesting search enhancements, we compare the performance difference to the
full solver when each single enhancement is removed.

1. Frequency heuristic
2. History heuristic
3. Transposition table
4. Dominated move reduction
5. Unit propagation
6. Static evaluation
7. 2-singleton-literal clause removal

We used 1000 randomly generated instances as our test set, and experimented with both cases
when MAX plays first and when MIN plays first. Each instance has 40 variables (n = 40), 20
clauses (l = 20), and each clause has 3 variables (h = 3). For the experiments the cache size was
set to 1 megabyte, and the number of nodes searched limited to 10,000,000 per instance.

The experimental results show that the 2-singleton-literal clause removal for instance simplifi-
cation is crucial. It is not uncommon to see speedups of more than 1000 with this method. Without
it, the solver could not solve any instance within the node limit of this experiment. Therefore, the
results for disabling this method are not shown in the following tables.

In Tables 1 and 2, we show the number of unsolved instances, the total time used and the total
number of nodes searched for the subset of instances solved by all 7 configurations for each case
when MAX or MIN plays first. With the best configuration, our solver solves the 1000 instances in a
total of about 14 seconds when MAX plays first. There are 917 satisfiable instances. 993 instances
were solved by all configurations. When MIN plays first, it takes about 47 seconds to solve all
instances, and there are 292 satisfiable instances. 997 instances were solved by all configurations.
The search speed of our solver in the experiments was about 500,000 nodes per second.

From the tables, we can clearly see that after 2-singleton-literal clause removal, heuristics for
move ordering are most effective, and the history heuristic is superior to the frequency heuristic.
Static evaluation and transposition table contribute only small improvements in our experiments,
although these methods were much more significant when incorporated into a bare-bone solver
without any other enhancements. We also tried to increase the size of transposition table up to
128M on this test set, but it did not help much.

Game-SAT: A Preliminary Report 361

Method disabled # unsolved solving time (sec.) node count

None 0 01.18 622710

Cache 0 01.36 733058

Static evaluation 0 01.51 810889

Unit propagation 0 02.01 1118581

Dominated move 0 09.80 4996560

Frequency heuristic 1 11.34 5607285

History heuristic 3 20.41 10241900

Table 1. Performance of each method when MAX plays first
(1000 random instances, n = 40, l = 20, h = 3)

Method disabled # unsolved solving time (sec.) node count

None 0 015.18 7616448

Cache 0 017.33 8984572

Static evaluation 2 019.47 10508572

Unit propagation 1 029.91 16483991

Dominated move 2 077.80 37374162

Frequency heuristic 5 138.35 68793868

History heuristic 7 426.06 100371607

Table 2. Performance of each method when MIN plays first
(1000 random instances, n = 40, l = 20, h = 3)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
in

st
an

ce
s

Number of clauses (l), h = 3

n = 15
n = 20
n = 25
n = 30
n = 35

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 tr
ie

s

Number of clauses (l), h = 3

n = 15
n = 20
n = 25
n = 30
n = 35

Fig. 1. Percentage of satisfiable instances Fig. 2. Average number of nodes searched
(MAX plays first) (MAX plays first)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

at
is

fia
bl

e
in

st
an

ce
s

Number of clauses (l), h = 3

n = 15
n = 20
n = 25
n = 30
n = 35

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 n

od
es

 s
ea

rc
he

d

Number of clauses (l), h = 3

n = 15
n = 20
n = 25
n = 30
n = 35

Fig. 3. Percentage of satisfiable instances Fig. 4. Average number of nodes searched
(MIN plays first) (MIN plays first)

362 Ling Zhao and Martin Müller

3.3 Phase transition

For the fixed clause model, Game-SAT random instances exhibit a sharp transition between all
being unsatisfiable and all being satisfiable. We also observed an easy-hard-easy pattern in our
experiments. Intuitively, for random CNF instances, the instance will be satisfiable with high
probability (a win for MAX) when there is a small number of clauses, while when the number of
clauses increases, the probability of the instance to be unsatisfiable (a win for MIN) approaches 1.

This experiment uses different values for the number of variables (n = 15, 20, 25, 30, 35). Each
clause contains 3 literals (h = 3). The number of clauses l varies from 10 to 50. We generated a set
of 1000 CNF instances for each data point. The number of clauses must be at least ⌈n

l
⌉, since we

require each variable to occur at least once in each instance. The percentage of satisfiable instances
and number of nodes searched are shown in Figures 1-4.

The phase transition for satisfiability is very evident in Fig. 1 and Fig 3. However, the easy-
hard-easy patterns for computational difficulties in Fig. 2 and Fig. 4 are very different from that
in SAT problems. While the easy-hard transition is rather abrupt, the slope for the hard-easy
transition is much flatter. In addition, the peak in node count does not coincide with the phase
transition for satisfiability. We also observed that statistically it is harder to solve when MAX plays
first than when MIN plays first. We have not yet developed any analytical methods to predict the
transitions, but it will be very interesting to explain when and why they happen.

4 Conclusions and future work

In this paper, we introduced the Game-SAT problem, which has applications in adversarial plan-
ning. Despite the similarity between Game-SAT and QBF, we argued that Game-SAT is an inter-
esting problem on its own with different characteristics.

We developed a Game-Sat solver incorporating many search enhancements, and showed exper-
imentally how they perform in this new domain. Since some of the methods are also useful for SAT
and QBF solvers, we hope our experiments from the viewpoint of heuristic search in games would
be of interest in the SAT and QBF communities, and most importantly, help the cross-fertilizing
of the two areas.

Since this is a preliminary report, there is much room left for future work. For example, finding
a manageable reduction from QBF to Game-SAT or vice versa would make the research for both
problems converge. Our test cases are currently limited to either simple examples converted from
trivial games or randomly generated instances. We are looking for instances converted from real
world applications or non-trivial games, so that Game-SAT can go beyond being only an abstract
model. We also need to apply our work on Game-SAT to adversarial planning and see how it
performs. As mentioned before, it will be interesting to analyze in theory the phase transition in
Game-SAT.

Acknowledgements

This work has been supported by the Alberta Informatics Circle of Research Excellence (iCORE)
and the Alberta Ingenuity Fund.

References

1. T.J. Schaefer. On the complexity of some two-person perfect-information games. Journal of Computing
System Science, 16:185–225, 1978.

2. J. Schaeffer. The history heuristic and the performance of Alpha-Beta enhancements , IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 11, no. 11, pp. 1203-1212, 1989.

3. R.E. Korf. Depth-First Iterative-Deepening: An optimal admissible tree search, Artificial Intelligence,
27, 97-109, 1985.

