
1048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

Multipurpose Strategic Planning
In the Game of Go

Shui Hu and Paul E. Lehner

Abstract —A heuristic method for adversarial planning is developed to
address the problem of multipurpose planning in the game of Go.
Static analysis and dynamic look ahead on both strategic and tactical
levels are used to generate possible goals and to identify interactions
among the achievability of various goals. Strategic, multipurpose goals
are composed of sets of interacting goals.

Index Terms —Computer Go, adversarial planning, automated
planning, artificial intelligence.

———————— ✦ ————————

1 INTRODUCTION

GO is a board game that originated in China about 4,000 years ago.
It is an alternating move game like Chess, but differs from chess in
its main objective (occupy territory rather than capture a piece)
and in the size of search space (substantially larger than Chess).
Others have noted (e.g., [14]) that there are many elements of Go
that are found in our daily lives. In particular, success in Go requires
the simultaneous pursuit of multiple goals in an adversarial context.
During a game, a player may need to address several “urgent de-
mands” with limited resources (only one stone per turn).

Computer Go requires both strategic and tactical planning.
Strategic planning determines the goals to pursue and the general
pattern for pursuing those goals. Tactical planning is concerned
with the detailed selection of specific actions that best implement a
chosen strategy. Although the necessity of strategic perception and
planning for effective play is widely recognized, current Go pro-
grams demonstrate a lack of strategic focus, which is reflected in
an apparent lack of direction in their play. In this paper we present
an approach to integrated strategic and tactical planning in Go.

Our approach is founded on the concept of a multipurpose
move—a move that supports multiple goals. Other researchers
have discussed and implemented multipurpose planning in Go by
trying to find mutivalued moves ([1], [6], [9], [10]). To find a mul-
tivalued move, candidate moves are generated for the current
board position, each move is assigned a value which represents its
potential gain, and if a move is generated by more than one gen-
erator, it has multiple values. Although useful, this approach to
multipurpose planning is passive and can not find moves that take
advantage of interactions among moves (e.g., where one move
changes the value of another move); or when one move intention-
ally creates a position which makes a follow-on multipurpose
move feasible. A more proactive approach to multipurpose plan-
ning is needed.

2 GENERAL DESCRIPTION OF OUR APPROACH

Static analysis and dynamic look ahead are two major techniques
used in computer Go. Static analysis extracts and analyzes game
information from a current position. Dynamic look ahead creates a

0162-8828/97/$10.00 © 1997 IEEE

————————————————

• S. Hu is with Hughes Information Technology Systems, 1616 McCormick
Dr., Upper Marlboro, MD 20774. E-mail: whu@eos.hitc.com.

• P.E. Lehner is with The Mitre Corporation, 1820 Dolly Madison Blvd.,
McLean, VA 22101-3481. E-mail: plehner@mitre.org.

Manuscript received 29 Apr. 1996; revised 9 June 1997. Recommended for accep-
tance by T. Ishida.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105312.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997 1049

sequence of possible future positions to analyze the results of ap-
plying specific strategies and tactics. In our approach, static analy-
sis is used to identify possible goals from a current board position.
Then, where necessary, dynamic tactical look ahead is used to
determine the major consequences of a proposed goal by examin-
ing some possible move sequences [11]. The results of static analy-
sis and dynamic look ahead are then merged to estimate the
achievability of various goals as well as goal interactions, where a
move to achieve one goal impacts the achievability of another
goal. The interactions are used to compose alternative strategic
multipurpose goals that coordinate the pursuance of individual
goals. The value (territory gain) of each strategy is then estimated.
The highest value strategy is selected and a detailed tactical look
ahead is performed to determine the best move for implementing
the selected strategy.

3 MORE DETAILS ON APPROACH

3.1 Game and Knowledge Representations
As in most computer Go programs (e.g., [5], [8]), we use object
hierarchies to model the game. The base level object is a stone, sets
of stones form strings, sets of strings form chains, and sets of
chains form groups.

Current Goal Structures (CGS) are used to characterize the hierar-
chy of goals that may be pursued in a given position. As illustrated in
Fig. 1, a CGS is a multiple level goal tree that is composed of a com-
mon top level goal, Occupy Territory; strategic subgoals that represent
position-dependent ways to pursue the top goal, and a bottom level of
tactical goals that are used to generate possible moves.

Fig. 1. Example of Current Goal Structure.

A strategic goal’s target or owner (if any exist) is always a
group. “Owner group” means that a goal is “requested”
(described below) by the group. Some goals have more than one
owner group, which means that the goals are requested by multi-
ple groups and merged together. Some strategic goals do not have
an owner, which means that the goals are requested by the master
goal, Occupy Territory, instead of a group. A tactical goal’s target
or owner could be any object except a stone. Tactical goals are a
subclass of goals that inherit all of the attributes from the goal
class, but have an extra attribute for actions (moves). A knowledge
base of goal definitions is used to control the generation of goals

and moves. Figs. 2 and 3 give abstract descriptions of a strategic
and tactical goal definition.

Fig. 2. Example of strategic goal definition.

When planning is initiated, strategic level goals are generated
by a static assessment of the current position. For instance, if an
enemy group’s safety value is below a certain threshold, an Attack
Group goal will be requested. The goal definitions for the strategic
goals are then invoked to generate tactical subgoals that imple-
ment the strategic goal (e.g., ladder attack, cut attack, ...). After the
tactical goals are generated, the achievability of those goals is
evaluated. Depending on the position, this may be done by either
static analysis or look ahead. For example, when the escape route
of a ladder attack’s target string is unobstructed, a static analysis is
sufficient to deduce whether the ladder attack will succeed. When
the escape route is obstructed by a mixture of black and white
stones a look ahead is launched. If the result shows that a goal is
unachievable it is pruned from the CGS.

Fig. 3. Example of tactical goal definition.

The look ahead control algorithm is [12] which is derived from,
and very similar to, the [4] tactical search algorithm. It begins with
an initial goal for the planning agent and a hypothesized goal for
an adversary. Beginning with the initial goal, CP2 generates a goal
stack by recursively generating subgoals until a bottom level ac-
tion is generated (which may be no action if it’s the other player’s
turn). A planner-adversary goal stack pair defines the next hypo-
thetical position. In each hypothetical future position, the goal
stacks that led to that position (from the previous position) are
processed to

1) determine if any of the goals in the planner or adversary
stack have succeeded or failed and if not then,

2) remove any subgoals that are invalid (e.g., the goal Move-
to(LocA) is invalid if LocA is already occupied),

3) generate new goal stacks by recursively generating subgoals
from the lowest valid subgoal in the stack.

If a position is marked as success for either side, then CP2 records
this and backs up to a previous position to explore the other possi-
ble goal stacks.

Based on the results of the static analysis or look ahead, an
evaluation function is used to give each tactical goal a value that
estimates how many potential territory points may be obtained by
pursuing that goal.

3.2 Goal Achievability, Relationships, and Composition
After [2], [13] we define multiple levels of achievability of a goal.
These are shown in Fig. 4. A goal is achievable if the player can
make a move that guarantees (after play and counter play) even-
tual attainment of the goal. It is under achievable if a player must
make two moves in succession to guarantee attainment, over
achievable if a player can let the opponent move first and still
guarantee attainment, under always achievable if he has two
moves to give, etc.

Relationships may exist between some goals. Often this rela-

1050 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997

tionship is established when these goals are generated. If a goal B
is generated because it promotes the attainment of another goal A,
then goals A and B have a Master and Servant relationship. This
relationship is used in the proactive multipurpose planning
mechanism described later.

Fig. 4. Levels of achievability. Negative numbers mean the opponent’s
moves.

An individual goal has just one purpose and one target. A
composed goal consists of more than one individual goal. We con-
sider three types of composition:

• ANDSIM (And Simultaneous): Conjunction of Achievable
goals

• ORSIM (Or Simultaneous): Conjunction of Under Achiev-
able goals

• ANDINI (And Initiative): Conjunction of Achievable and
Under Achievable goals

3.3 Planning Procedure
Our planning procedure consists of eight steps.

• Step 1. Generate CGS by static analysis.
• Step 2. Evaluate the achievablilty of each goal that is a leaf

of the CGS with static analysis or look ahead. For each Un-
der Achievable goal, a servant goal is generated to support
the attainment of the Under Achievable goal.

• Step 3. Process any servant goals and validate that an at-
tempt to attain the servant goal will promote attainment of
its master goal.

• Step 4. Calculate the potential gain of each tactical action in
the leaf of the CGS.

• Step 5. Propagate the tactical action’s achievability and its
gain to its parent goal.

• Step 6. Construct a decision table by composing ANDSIM,
ORSIM, and ANDINI goals.

• Step 7. Select as the planner’s strategy the single or com-
posed goal with the highest potential gain.

• Step 8. Perform detailed tactical search to select the best
move to implement selected strategy.

From the steps above, we can see the integration of strategic
and tactical planning. The planning procedure iterates between
strategic and tactical level reasoning. In this mechanism, the stra-
tegic view is a part of every move.

4 EXAMPLE

A prototype Go program was implemented to evaluate our ap-
proach to multipurpose planning in Go. Our general approach to
evaluation was to develop a limited tactical knowledge base that
would be adequate to support strategic multipurpose planning for
some interesting and difficult Go positions. A complete knowl-
edge base was not implemented since this would have been well
outside the scope of our research effort, and would not have con-
tributed substantially to our research objective. As will be seen
below, the performance of our multipurpose planner is very
strong on these selected problems, which we believe constitutes
evidence for the general effectiveness of our approach.

We present an ORSIM example from our Go program. An OR-
SIM planning example was selected because it is relatively easy to
explain. The most interesting and technically challenging exam-
ples are ANDINI planning, where the program tries to maintain
initiative by finding moves that achieve one goal while threatening

to achieve another one - thereby forcing the opponent to respond
defensively and denying him the opportunity to initiate a new
attack. The reader is encouraged to examine [15] for a detailed
example of ANDINI planning.

In ORSIM planning, the planner looks for a move that supports
two or more Under achievable goals, where no counter measure
can be found for the opponent to prevent the attainment of all
goals. The gain for an ORSIM goal is the minimum gain of indi-
vidual Under Achievable goals inside the composed goal set.

Consider Fig. 5. A potentially desirable move for black would
be a ladder attack to String-15. But this is not feasible because of
white String-2 and String-6 on the lower left corner. With ORSIM
planning, a clever solution can be found.

Fig. 5. ORSIM Example. Original example from [3]. Black’s turn. The
numbers on the stones are string identifiers.

At step 1, a CGS corresponding to this position was generated
by static analysis (see Fig. 6). In this CGS, we can see the system
tries to attack String-15 with a net attack and a ladder attack in
goals 10 and 11 respectively. At step 2, all of the goals’ achievabil-
ity were evaluated by static analysis and tactical look ahead. Both
Goal-10 and Goal-11 are identified as Under Achievable. In the
look ahead for the ladder attack on String 15 (Goal 10), an obstacle
String-6 was found. Therefore, a supporting goal was generated to
attack Group-2. The purpose of the supporting goal is to promote
the attainment of Ladder Attack on String 15. At this time, no spe-
cific tactic was determined. The strategic Goal-12 Attack Group-2
is added to the CGS tree. This goal is Goal-10’s servant. At step 3,
the servant goal was processed and a subgoal was generated to
attack the obstacle String-6. A Cut attack was selected by static
analysis. After look ahead, the Cut goal was identified as Under
Achievable.

A validation function was then called to validate that the Cut-
ting Attack on String 6 supports the Ladder Attack on String 15.
This process tries to find a conjunction between Master and Ser-
vant goals. The ”cutting” tactic was played during look ahead.
Two alternative moves were found to cut the connection to white
String-6. After the opponent made a hypothetical response to each
cutting move, the look ahead of the ladder attack, from the right
upper corner, was launched again (in the hypothetical position).
This time the ladder attack became Achievable because of the cut-
ting move played in the previous turn. Of course, white had an-
other move choice: extend String-15 to prevent the ladder attack

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 9, SEPTEMBER 1997 1051

on the upper right corner. The corresponding look ahead is vali-
dated and added to the CGS tree.

At this point the planner knows that a beneficial synergy of two
Under Achievable goals exists. The action D16, created by cutting,
should either cut the connection between String-6 and String 2 or
makes the ladder attack achievable. This is a proactive method for
multipurpose planning. At steps 4 and 5, the values were calcu-
lated and propagated for each strategy. Finally, the CGS is com-
pleted (see Fig. 1). At step 6, a decision table was created by com-
posing multipurpose goals. In this case, one of the options is to
pursue the composed goal ORSIM (Goal 5, Goal 12). Assuming the
worst, the value of an ORSIM goal is the minimum of the compo-
nent goals. In this case, its value is 23 from the ladder attack rather
than 25 from the cutting attack.

An interesting note, if an Over Achievable goal is on the CGS,
the planner must consider the possible negative impact on the
Over Achievable goal from the chosen strategy. Although an Over
Achievable goal is rarely selected for pursuit, a selected strategy
should avoid demoting an Over Achievable goal to Achievable; or
the caused demotion may give the opponent a possible multipur-
pose move. If a demotion is detected by a look ahead, it means that
the planner might encounter an opponent’s ORSIM goal in its
pursuit of the chosen strategy. The reviewing of this contingency
must be performed before the selection of the strategy.

5 CONCLUSION

In this paper, we presented an approach to multipurpose planning
in Go. Our approach exploits interactions among various individ-
ual goals to find strategic multipurpose goals. Our approach per-
formed well on selected problems. With a more complete knowl-
edge base, we believe it would continue to perform well as part of
a general computer Go program.

Regarding computational complexity, our approach requires a
number of localized searches to be performed across the entire
board at both the strategic and tactical levels. At first, this may
appear to be computationally unrealistic. However, the opposite is
true. During strategic level analysis we use only static analysis and
small beam-width searches to learn about interactions across the
board. We then use the results of strategic planning to carefully
focus tactical analysis, thereby limiting the amount of high beam-
width search that occurs at the tactical level. We note further that,
if needed, search breadth and depth can be artificially limited as,
for instance, was done by [4]. This is not to say that our approach
is not computationally complex, but only that it is no more com-
plex than other reasonable knowledge-based approach.

REFERENCES
[1] J.L. Ryder, “Heuristic Analysis of Large Trees as Generated in the

Game of Go,” PhD thesis, Stanford Univ., 1971, Microfilm 71-03,
pp. 162.

[2] D.B. Benson, “Life in the Game of Go,” Information Sciences,
vol. 10, pp. 17-29, 1976. Reprinted in [7].

[3] T. Kageyama, Lessons in the Fundamentals of Go. The Ishi Press,
1978.

[4] W. Reitman and B. Wilcox, “The Structure and Performance of the
INTERIM.2 Go Program,” Proc. Int’l Joint Conf. Artificial Intelli-
gence, pp 711-719, 1979. Reprinted in [7].

[5] K.J. Friedenbach, “Abstraction Hierarchies: A Model of Percep-
tion and Cognition in the Game of Go,” PhD thesis, Univ. of Cali-
fornia, Santa Cruz, 1980, Microfilm.

[6] B. Wilcox, “Computer Go” Amer. Go J., vol. 13, nos. 4, 5, and 6;
vol. 14, nos. 1, 5-6; vol. 19, 1978, 1979, and 1984). Reprinted in [7].

[7] D. Levy, ed., Computer Game, vols. 1 and 2. New York: Springer-
Verlag, 1988.

[8] K. Chen, “Group Identification in Computer Go,” Heuristic Pro-
gramming in Artificial Intelligence, D. Levy and D. Veal, eds.,
pp. 195-210, Ellis Horwood, Fall 1989.

[9] K. Chen, A. Kierulf, J. Nievergelt, and M. Muller, “The Design
and Evolution Go Explorer,” Computer, Chess, and Cognition, T.
Marsland and J. Schaeffer, eds., pp. 271-285. Springer-Verlag,
1990.

[10] A. Kierulf, K. Chen, and J. Nievergelt, “Smart Game Board and
Go Explorer: A Study in Software and Knowledge Engineering,”
Comm. ACM, pp. 152-166, Feb. 1990.

[11] P.E. Lehner, “Strategic Planning in Go,” Computer Game Playing:
Theory and Practice, M. Bramer, ed. Ellis Harwood Ltd., 1983.

[12] P.E. Lehner, “Automated Adversarial Planning Search Procedures
With Provable Properties,” Advanced Technology for Command and
Control Systems Engineering, S. Andriole, ed. Fairfax, Va.: AFCEA
International Press, 1990.

[13] R. Popma and L.V. Allis, “Life and Death Refined,” Heuristic Pro-
gramming in Artificial Intelligence 3, J. van den Herik and L.F. Allis,
eds. Ellis Horwood, 1992.

[14] Y. Miura, Go: An Asian Paradigm for Business Strategy, Kiseido,
1995.

[15] S. Hu, “Multipurpose Adversary Planning in the Game of Go,”
PhD thesis, George Mason Univ., 1995, Microfilm 9608536.

Fig. 6. CGS of ORSIM example: After Step 1.

