
TIGUKAT: A Uniform Behavioral Objectbase Management System

M. Tamer �Ozsu, Randal Peters, Duane Szafron,

Boman Irani, Anna Lipka, Adriana Mu~noz

Laboratory for Database Systems Research

Department of Computing Science

University of Alberta

Edmonton, Alberta

Canada T6G 2H1

Abstract

We describe the TIGUKAT objectbase management system that is under development at the Lab-
oratory for Database Systems Research at the University of Alberta. TIGUKAT has a novel object
model whose identifying characteristics include a purely behavioral semantics and a uniform approach
to objects. Everything in the system, including types, classes, collections, behaviors, functions as well
as meta-information, is a �rst-class object with well-de�ned behavior. In this way, the model abstracts
everything, including traditional structural notions such as instance variables, method implementation
and schema de�nition, into a uniform semantics of behaviors on objects. Our emphasis in this paper is
on the object model, its implementation, the persistence model and the query language. We also (brie
y)
present other database management functions that are under development such as the query optimizer,
the version control system and transaction manager.

1 Introduction

The penetration of data management technology into new application areas with more demanding require-
ments than business data processing has generated a search for appropriate data models and system archi-
tectures to support these requirements. Some examples of these application areas are engineering design
systems, knowledge base system applications, o�ce information systems, and multimedia systems. It is now
commonly accepted that relational database management systems (DBMSs), with their
at representation
of data, do not have su�cient power to ful�ll these requirements. The fundamental di�culty relates to
the recognized semantic mismatch between the entities that are commonly encountered in these application
domains and the representation provided by the underlying DBMS.

Object-oriented technology is the topic of intense study as the major candidate to successfully meet the
requirements of advanced applications that use data management services. At the Laboratory for Database
Systems Research at the University of Alberta, we are engaged in the design and development of an objectbase
management sytem (OBMS)1, called TIGUKAT2 which follows the object-oriented methodology in its own
design. Consequently, all database functionality is incorporated within an extensible object model. In
this paper, we provide a genral overview of TIGUKAT with special emphasis on its object model, its
implementation and the persistence model. Some of the novel features of TIGUKAT are the following:

1We prefer to use the terms \objectbase" and \objectbase management system" rather than the more popular \object-
oriented database" and \object-oriented database management system" since not only data in the traditional sense is managed,
but objects in general, which includes things like code in addition to data.

2TIGUKAT (tee-goo-kat) is a term in the language of the Canadian Inuit people meaning \objects." The Canadian Inuits,
commonly known as Eskimos, are native to Canada with an ancestry originating in the Arctic regions of the country.

1

1. It has a purely behavioral object model where the user (a person or an application program) interacts
with the system only by applying behaviors to objects. In this way, full abstraction of modeled entities
is accomplished since the users do not have to di�erentiate between attributes and methods.

2. Its object model is uniform. Everything in the system, including types, classes, collections, behaviors,
functions and meta-information, is a �rst-class object with well-de�ned behavior. Thus, there is no
separation between objects and values so the schema information is a natural part of the database that
can be queried just like other objects.

3. This uniformity extends to other system entities (e.g., queries, transactions, views) which are treated
as objects that can be created, stored, manipulated and queried like any other object.

Two di�erent approaches have been followed in the development of OBMSs. The �rst approach is to
adopt the type system of an object-oriented programming language as the object model of the OBMS. For
example, ObjectStore [LLOW91] adopts the type system of C++ [Str86] while Gemstone [BOS91] follows the
type system of Smalltalk [GR83]. The second alternative is what is known as language-independent or generic
object models where the OBMS de�nes its own object model and appropriate mappings are provided from
languages to this object model. TIGUKAT follows the second approach as does, for example, O2 [Deu91].
A database programming language is being designed that is tightly integrated with the TIGUKAT object
model. In addition, mappings will be provided from other programming languages.

TIGUKAT is an experimental system that is under constant development and revision. We have, there-
fore, chosen to follow an extensible system design approach. The uniformity of the model, which treats all
system entities as objects, is the basis of TIGUKAT's extensibility. The general architecture of the system
is depicted in Figure 1. To date, most of the development and implementation work has concentrated on the
object model, the query model, and the implementation of query languages. The architectural framework of
the query optimizer has also been developed [Mun93], however the details of the optimizer (e.g., the full set
of transformation rules, the detailed cost functions) have yet to be implemented.

The organization of the paper is as follows. We start, in Section 2, with an overview of the TIGUKAT
object model, presenting the primitive type system. We include an example database application design
to demonstrate the features of TIGUKAT. Section 3 describes some of the more important implementation
design decisions and the approach we have taken. This is followed, in Section 4, with a description of
the persistence model of TIGUKAT. Section 5 presents the query model with emphasis on the user-level
languages. A more detailed description of the object and query models are given in [PL�OS93a, Pet94].
In Section 6, we provide a brief overview of our approach to providing the common database management
functions such as query optimization, version management and transaction management. Finally, in Section 7
we end with a discussion of our future research directions.

2 Object Model

The TIGUKAT object model is de�ned behaviorally with a uniform object semantics. The model is behav-
ioral in the sense that all access and manipulation of objects occurs through the application of behaviors
(operations) on objects. The model is uniform in that every concept within the model has the status of a
�rst-class object .

Uniformity in TIGUKAT is similar to the approaches of DAPLEX [Shi81] and its object-oriented coun-
terpart OODAPLEX [Day89]. However, our de�nition of uniformity is complete in that it unconditionally
extends over all forms of information, including the system components such as the schema, meta-information,
query model, query optimizer, view manager, transaction manager, and so on. We adopt another signif-
icant aspect of these models: their functional approach to de�ning behaviors. TIGUKAT enhances this
approach by providing a separation of behavior, which is a semantic notion, from function, which is a means
of implementing behavioral semantics.

The TIGUKAT model de�nes a number of primitive objects that include: atomic entities (such as reals,
integers, strings, etc.); types for de�ning common features of objects; behaviors for specifying the semantics of

2

Query
Optimizer

TDL
Interpreter

TQL
Compiler

Transaction
Manager

Other
Interfaces

(Browsers)

Schema
Evolution

&
Version Control

View
Manager

Query Model

AAAAAAA
AAAAAAATIGUKAT Object Model

Programmatic
Interface

AAAAAAAAAAAAAA

Storage Manager

Figure 1: The TIGUKAT System Architecture

the operations that may be performed on objects; functions for specifying the implementations of behaviors
over various types3; classes for the automatic classi�cation of objects based on their type4; collections
for supporting general, heterogeneous, user-de�nable groupings of objects; and higher-level constructs to
uniformly represent meta-information (i.e., schema) as objects with well-de�ned behavior. This last feature
gives the system re
ective capabilities [P�O93].

The primitive type system of TIGUKAT is shown in Figure 2 with the type T object as the root of the
lattice and type T null as the base. The type T null de�nes objects that can be returned by behaviors
when no other result is known (e.g., null, unde�ned, etc.). These are necessary because the result of every
behavior application in TIGUKAT must be a reference to an object. There are no dangling references in
TIGUKAT.

As a notational convenience, the pre�x T refers to a type, C refers to a class, L refers to a collection,
B refers to a behavior and F refers to a function. Each pre�x also has its own font variation for the
string following it. For example, T city is a type reference, C city is a class reference, L historicSites is
a collection reference, B population is a behavior reference, F calcPopulation is a function reference and a
reference such as Edmonton without any pre�x represents some other application speci�c object reference.

3Associations between behaviors and functions form the support mechanism for overloading and late binding of behaviors.
4Types and classes are separate constructs in TIGUKAT.

3

T_object

T_type

T_function

T_class

T_poset

T_bag

T_boolean

T_character

T_string

T_real T_integer T_natural

T_class-class

T_type-class

T_collection-class

T_null

Supertype Subtype

T_collection

T_atomic

T_listT_behavior

Figure 2: Primitive type system of TIGUKAT.

2.1 Behaviors and Functions

The access and manipulation of objects occurs exclusively through the application of behaviors. This is
similar to the message-based approach of Smalltalk [GR83] and OODAPLEX [Day89]. Appendix A lists the
signatures for the native behaviors de�ned by the primitive types of Figure 2.

We separate the de�nition of a behavior from its possible implementations, which are represented by
TIGUKAT functions (corresponding to methods in other models). The bene�t of this approach is that
common behaviors over di�erent types can have a di�erent implementation in each of the types (known as
overloading the behavior). This gives the model the ability to dynamically bind behaviors to implementations
at run time (known as late-binding).

There are two kinds of implementations for behaviors. One is a computed function, which consists of
runtime calls to executable code and the other is a stored function, which is a reference to an existing object
in the objectbase. Stored functions eliminate the need for instance variables, which limit reuse [WBW89b].
The uniformity of TIGUKAT conceptually transforms each behavioral application into the invocation of a
function, regardless of whether the function is stored or computed. This allows designers to concentrate
on semantic responsibilities rather than on data attributes [WBW89a]. For example, the type designer is
free to develop a purely behavioral speci�cation of a type while the type implementor decides whether the
behaviors are implemented by stored or computed functions.

The semantic de�nition of a behavior has many forms. A simple approach, common in other models, is a
signature expression consisting of a behavior name, parameter types and a return type. Signatures are useful
and necessary for describing the semantics of behaviors, but they are inadequate for characterizing the full
semantics. For now, we assume that a proper semantic speci�cation mechanism exists. In the current model
design, a behavior is speci�ed only by its signature. However, the extensibility of the model makes it easy to
incorporate a more complete semantic speci�cation when one is developed. The only extension required is
to modify the implementation of the B semantics behavior on T behavior to correspond to the new, more

4

complete semantics. We are currently investigating speci�cation techniques and denotational semantics as a
complete semantic description mechanism for behaviors.

Behaviors are applied to objects. The application of a behavior, say B population, to an object, say
Edmonton, using some arguments, say a1; : : : ; an, can be denoted by (B population(Edmonton))(a1; : : : ; an)
or by use of the dot notation Edmonton.B population(a1; : : : ; an). In either case, the object Edmonton is
called the receiver of the behavior.

Behaviors are instances of the type T behavior and functions are instances of the type T function. We
use an arrow \!" in function type speci�cations and curry multiple argument functions. A function type is
of the form A ! R where A represents the argument type expression of the function and R represents the
result type. In general, the argument and result types may be any type speci�cation, including a function
type. Then, by currying, multiple argument functions may be speci�ed.

As de�ned in more detail in Section 2.3, types are related to each other via subtyping (also referred to as
behavioral inheritance). A behavior de�ned on a type T x is inherited in the type if and only if the behavior
is de�ned in a supertype of T x. A behavior de�ned on a type T x is native in the type if and only if the
behavior is not de�ned in any supertype of T x.

Inherited behaviors do not necessarily borrow their implementation from their supertypes (although this
can be set as the system default). Therefore, we de�ne a separate reuse mechanism for implementations
called implementation inheritance. An implementation of a behavior in a type T x is inherited if and only
if the behavior is inherited and the function implementing the behavior in T x is the same as a function
implementing the behavior in a supertype of T x. Otherwise, the implementation of the behavior is rede�ned
(or overridden) in T x.

TIGUKAT supports multiple subtyping . However, the separation of behaviors from functions introduces
the need for separating behavioral inheritance from functional inheritance and de�ning separate con
ict
resolution schemes for both. Implementation inheritance con
icts are resolved using an approach similar to
the one used in Modular Smalltalk [WBW88]. Speci�cally, it is an error for a type to inherit two di�erent
implementations (i.e., two instances of T function) for the same inherited behavior. The error is resolved by
explicitly rede�ning5 the T function for that behavior. Note that one choice for rede�nition is one of the two
con
icting T functions. No separate mechanism is required to solve inheritance con
icts between instance
variables because there are no instance variables. Stored function con
icts are resolved in the same uniform
manner as computed function con
icts. Furthermore, in the context of a complete behavioral semantics,
there are no behavioral inheritance con
icts. That is, the inherited behavior in the multiple supertypes will
be semantically equivalent or not. When they are equal, only one behavior is de�ned in the subtype. When
they are not equal, multiple behaviors are de�ned in the subtype.

2.2 Objects

An object is a fundamental primitive in TIGUKAT because the conceptual level of the model deals uniformly
with objects. Objects are de�ned as unique (identity, state) pairs where identity represents a unique,
immutable system managed object identity (or oid) and state represents the information carried by the
object. There are system de�ned mappings oid(o) and state(o) that accept an object o and return the oid
or state of o, respectively. These are internal mappings used only by the system and are not visible to the
user. The existence of unique oids does not preclude application environments such as object programming
languages from having many references (or denotations) to objects, which need not be necessarily unique
and may even change depending on the scoping rules of the application.

In TIGUKAT, every object can be viewed as a composite object, meaning every object has refer-
ences/relationships (not necessarily implemented as pointers) to other objects. These other objects are
returned as results of behavior applications, but it does not matter whether the behaviors are implemented
by stored or computed functions. For example, even integers are composite objects since they have behaviors
that return objects.

5Rede�nition may be the explicit writing of a new function or simply choosing an existing function.

5

Object existence, access, and manipulation in TIGUKAT is based on the notions of reference, scope and
lifetime. This is similar to other model proposals (e.g., [Sny90, Ken90, FKMT91]) in that the only user-
expressible representation of an object is a reference within a particular scope. A scope de�nes the visibility,
access paths, and lifetime of object references. The lifetime of an object is independent of the lifetime of
a reference to that object within a particular scope. That is, when a reference to an object disappears
at the end of a scope, the object being referenced does not necessarily disappear along with it. This can
depend on the de�nition of the scope and the persistence of the object. From the database perspective there
is also the issue of explicit deletions and the dangling reference problem that follows. That is, when an
object is explicitly deleted, all references to that object should no longer point to the object and somehow be
invalidated. In TIGUKAT, every behavior application is a reference to an object. Thus, we do not invalidate
references, but rather bind them to an object whose type is T null. That is, when an object is explicitly
deleted, the object is changed to an instance of type T null (called unde�ned) so that all references to it
remain valid. Garbage collection is used to reclaim the storage of deleted objects. The deletion semantics
is explained in more detail in Section 4 since a similar approach is used when a persistent object is made
transient. The similarity stems from the fact that subsequent programs will not see the persistent object
that was made transient and it will appear as though the object was deleted. Another condition for object
deletion and storage reclamation is if an object no longer has references through its class.

Operations on objects are performed through behaviors and object access is speci�ed through references.
Therefore, an operation on an object reference in a particular scope represents the application of a behavior
to the actual object that is referenced. We de�ne several behaviors on the type T object that are inherited
by all types and, therefore, are applicable to every object. A mechanism is required to determine if two
object references refer to the same object. This requirement is met by the behavior B equal. For any two
object references Ri and Rj, the result of (B equal(Ri))(Rj) is true if and only if oid(Ri) and oid(Rj) map
to the same object identity. The above operation is more commonly speci�ed as Ri = Rj.

This is the only kind of equality that the primitive model de�nes. It is quite strong in that the only way
two object references are equal is if they refer to the same object (with the same identity). Our notion of
object equality is the same as \identity equal" de�ned in [KC86] or \0-equality" de�ned in [LRV88]. We do
not de�ne, at this level, any notions of shallow or deep equality found in other models [KC86, LRV88, Osb88]
or extended versions of these, which determine equality at various levels [SZ90]. These notions can be de�ned
as equivalence relationships on the behavioral characteristics of objects and, therefore, should be left to
customized interpretations at the behavioral level rather than being part of the primitive model de�nition.
For example, one may de�ne person equality based on the equality of their social insurance numbers. The
implementation of B equal in a type T person can be overridden to implement this semantics.

Objects in the model are strongly-typed6 in the sense that each object is associated with a single type.
A type de�nes all the behaviors applicable to the objects of the type. The B mapsto behavior, when applied
to object o, returns the type of that object. It is important in type-checking and query processing to know
the type of an object [S �O90b].

Another behavior de�ned on T object is the identity mapping behavior B self , which maps every object
to itself. That is, for any object o, B self (o) = o. There are additional behaviors whose presentation depends
on other primitive concepts. We introduce them as these concepts are de�ned.

2.3 Types

A type de�nes behaviors and encapsulates hidden behavioral implementations (including state) for objects
created using the type as a template. The behaviors de�ned by a type describe the interface for the objects
of that type. Types are organized into a lattice structure using the notion of subtyping which promotes
software reuse and incremental type development. Since TIGUKAT supports multiple subtyping, the type
structure is potentially a directed acyclic graph (DAG). However, this DAG is transformed to a lattice by
rooting it at T object and lifting with the primitive type T null.

6Note that this di�ers from another common meaning of strong typing that refers to static type-checking.

6

The uniformity of TIGUKAT implies that types are also objects with their own state and identity along
with their own type. The type which describes all type objects is T type and it is accessible in the same
manner as any object. Thus types, in addition to serving as descriptions of objects, are objects themselves
and the type T type serves as a description for all other types, including itself. This is known as the
type:type property [Car86] in programming languages. The state of a type object consists of a structural
speci�cation of its instances (a template), references to the encapsulated behaviors it de�nes, references to
its subtypes and supertypes, and a reference to its associated class.

Two relationships on types have been identi�ed [�OSP94]. One is the concept of a type specializing
another type in a manner similar to what is described in [MZO89]. The other is the more popular, and
stronger, notion of explicitly creating a type to be a subtype of another type [Car84]. A type T 1 specializes
a type T 2 if T 1 de�nes all the behaviors of T 2 (and possibly more). A type T 1 is explicitly created as a
subtype of a type T 2 which means T 1 specializes T 2 and all the instances of T 1 are also instances of T 2.
Thus, subtyping implies specializes and de�nes a subset inclusion relationship on type extents. Conversely,
specializes does not imply subtyping. Furthermore, subtyping supports substitutability [SZ90] because an
object of type T x can be used (substituted) in any context specifying a supertype of T x. Specialize on its
own does not support substitutability. Specialize is a semantic property derived from the behaviors de�ned
on types, while subtyping is an explicit use of this property to de�ne a partial order on types and a subset
inclusion relationship on their extents.

A behavior is required on types that determines the class of a given type. In order to create objects of
a particular type, there must be a class associated with the type to manage its instances. However, types
do not require an associated class if there are no instances of that type (e.g., abstract types). T type de�nes
behavior B classof for accessing the unique class (if it exists) associated with a particular type.

2.4 Classes and Collections

A class ties together the notions of type and object instances. The entire group of objects of a particular
type, including its subtypes, is known as the extent of the type and is managed by its class. We refer to this
as the deep extent and introduce a shallow extent that refers only to those objects created from the given
type without considering its subtypes. The deep extent imposes a subset inclusion relationship on classes.
We refer to this as subclassing , which has a direct relationship to subtyping on types. That is, a class C x
is a subclass of a class C y, meaning the deep extent of C x is a subset of the deep extent of C y, if and
only if the type associated with C x is a subtype of the type associated with C y.

Objects of a particular type cannot exist without an associated class and every class is uniquely associated
with a single type. Another feature of classes is that object creation occurs only through a class using its
associated type as a template for the creation. Thus, a fundamental notion of TIGUKAT is that objects
imply classes which imply types. De�ning object, type, and class in this manner introduces a clear separation
of these concepts. This separation is important in schema evolution which manipulates type objects into
new subtype relationships and need not be concerned with the overhead of classes. Furthermore, many
object-oriented systems include abstract types whose sole purpose is to serve as placeholders for common
behaviors of subtypes and are never intended to have any instance objects. In these cases, there is no reason
to manage classes for abstract types, because there are no instances of these types.

We de�ne a collection as a general user-de�nable grouping construct (other constructs include bags for
maintaining duplicates, posets for partially ordered collections, and lists that encompass both properties).
A collection is similar to a class in that it groups objects, but it di�ers in the following respects. First,
object creation may not occur through a collection; object creation occurs only through classes. This means
that collections only form user-de�ned groupings of existing objects. Second, an object may exist in any
number of collections, but is a member of the shallow extent of only one class. Third, the management of
classes is implicit in that the system automatically maintains classes based on the type lattice whereas the
management of collections is explicit , meaning that the user is responsible for their extents. Finally, a class
groups the entire extension of a single type (shallow extent), along with the extensions of its subtypes (deep
extent). Therefore, the elements of a class are homogeneous up to inclusion polymorphism. A collection is

7

heterogeneous in the sense that it can contain objects of types unrelated by subtyping. Furthermore, there
is no distinction between shallow and deep extents for collections.

In TIGUKAT, we de�ne T class as a subtype of T collection, which introduces a clean semantics
between the two and allows the model to utilize them in an uniform way. For example, the targets and
results of queries are typed collections of objects and since classes are a subtype of collection, they may be
used in queries as well. This approach provides
exibility and expressiveness in formulating queries and gives
closure to the query model, which is often regarded as an important feature [Bla91, YO91].

2.5 Higher Level Constructs and Re
ection

The types T class-class, T type-class, and T collection-class in Figure 2 make up the meta type
system. Their placement within the type lattice is in direct support of the extensibility of the model.
Identifying characteristics of the meta-model are its ability to uniformly represent meta-information as
�rst-class objects with well-de�ned behavior and to maintain the behavior application abstraction on these
constructs. This means that all properties of the model apply to this higher-level information uniformly.
This property has been referred to as re
ectiion [P�O93].

The higher-level objects are called meta-objects because they provide support for other objects. For
example, T type provides support for types and C class manages the class objects in the system. These
meta-objects are uniformly managed by means of the primitives. This is possible through the introduction
of higher level constructs called meta-meta-objects. Our model de�nes a three tiered structure for managing
objects as depicted in Figure 3. Each box in the �gure represents a class and the text within the box is the
common reference name of that class. The dashed arrows represent instance relationships with the head of
the arrow being the instance and the tail being the class it belongs to.

C_class-class

m -objectsC_class

m -objectsClass object
instances

C_collection-class

m -objects

C_type-class

C_type

Type object
instances

Real World Objects

Persons

Maps
Dwellings

Behaviors

FunctionsStrings

Zones

Integers

Geometric Shapes

Reals

C_collection

Collection
object

instances

2

1

0

Figure 3: Three tiered instance structure of TIGUKAT objects.

The lowest level of our instance structure consists of the \normal" objects that depict real world entities
such as integers, dwellings, maps, behaviors and so on. Type and collection objects also reside at this level,
which illustrates the uniformity in TIGUKAT. We de�ne this level as m0 and classify its objects as m0-
objects. The second level de�nes the class objects whose associated types maintain schema information for
the objects below it. These include C type, C collection and most other classes in the system. This level
is denoted as m1 and its objects are m1-objects. The reasons for placing the classes at this level are that
classes maintain the objects of the system (objects cannot exist without classes) and classes are associated
with types that de�ne the schema information of their instances (classes cannot exist without types). Thus,
classes represent the binding management between objects and the operations that can be performed on them

8

as de�ned by their type. The upper-most level consists of the meta-meta-information (labeled m2), which
de�nes the functionality of the m1-objects and is used to give de�nitional properties to these objects. The
structure is closed o� at this level because the m2-class C class-class is an instance of itself as illustrated
by the looped instance edge.

In the following discussion, we show the interactions among the various levels of the structure and how
they contribute to the uniformity of TIGUKAT, which in turn forms the foundation for re
ection. We refer
the reader to the primitive type lattice in Figure 2 and a portion of its companion primitive class lattice
shown in Figure 4. Each C x class in Figure 4 is associated with the corresponding T x type in Figure 2.

C_type

Instance edges to
type objects

C_object

C_type-classInstance edges to
other class objects

C_class

C_collection-class

C_collection C_class-class

Instance edges to
collection objects

Superset

Class Instance
Instance edge

Subset

Figure 4: Subclass and instance structure of m1 and m2 objects.

Figure 4 illustrates the subset inclusion and instance structure of some of the m0, m1, and m2-objects
in relation to one another. Starting from the left-side of the lattice structure, we explain the relationships
between these classes and their instances. The class C object is an m1-object that maintains all the objects
in the objectbase (i.e., every object is in the deep extent of class C object). Two other m1-objects in
the �gure are subclasses of C object, namely, C type and C collection. These two classes maintain the
instances of types and collections, respectively. Class C collection is further subclassed by the m2-object
C class because every object that is a class is also a collection of objects. For example, the class C city is an
instance of the class C class and C city is a collection of city objects. The deep extent of C class manages
all classes in the system such as C object, C type, C city, and so on. Finally, C class is subclassed
by m2-objects C type-class, C class-class, and C collection-class. Intuitively, C type-class is a class
whose instances are classes that manage type objects. Similarly,C class-class is a class whose instances are
classes that manage class objects and C collection-class is a class whose instances are classes that manage
collection objects.

This meta-architecture is su�cient for managing all objects, includingmeta-information, in a uniformway.
This provides the foundation for re
ective capabilities such as the support for class behaviors and re
ective
queries. To support class behaviors, each class can be made an instance of its own meta-class instead
of the common meta-class C class. For example, to de�ne a class behavior B averageAge on C person
that computes the average age of the persons, we can uniformly extend the meta-model by creating a
type T person-class as a subtype of T class, de�ning the behavior B averageAge on T person-class,
creating an m2-class C person-class as the associated class of T person-class, and creating C person
as an instance of C person-class. Now, we can create person instances of C person in the usual way and
B averageAge is applicable to C person and returns the average age of all persons in C person. We can
de�ne many other class behaviors on T person-class, including various object creation and initialization
behaviors. This approach is in contrast to the usual way of making C person a direct instance of C class.
If this is done, it is di�cult to de�ne class behaviors for C person since C class typically has many class

9

instances and any class behavior de�ned on T class would apply to all class objects. Our approach is
superior to an approach that de�ned an extra m2-class for every class (e.g., Smalltalk), since it has smaller
space overhead.

More powrful extensions are also possible. For example, although C person-class is a separate m2-class
for C person, it can be used to group other related classes such as C student, C employee, etc., simply
by creating them as instances of this class. Behavior B averageAge would then be applicable to all these
additional classes. Our approache provides a good balance between the
exibility of de�ning class behaviors
with the e�ciency of grouping common classes under a single m2-class.

Re
ective queries can be expressed naturally in TIGUKAT without any meta-level extensions to the query
languages. The reason is that the query model incorporates the behavioral paradigm of the object model and
since the meta-system is uniformly represented by objects with well-de�ned behaviors, the meta-objects can
be used in queries just like any other objects. For example, it is natural (through behavior applications) to
express a query that returns the types that de�ne a behavior B age with the same implementation as one of
its supertypes. Additional examples include a query that returns a collection of all types that don't have an
associated class (i.e., all abstract types), a query that returns types that de�ne a certain implementation for
a certain behavior, a query that returns the classes that have a greater cardinality than all other collections
in the system, and so on. Moreover, we can use re
ection to infer the result type of a query during its
execution. An example re
ective query is given in Section 5.

Our meta-class structure is similar to ObjVlisp [Coi87] and is a generalization of the one-to-one class/meta-
class architecture of Smalltalk [GR89]. The generalization of Smalltalk stems from the fact that we do not
necessarily de�ne an m2-class for every class, which is required in Smalltalk. We can group several classes
under a commonm2-class. Full details of the re
ective features of TIGUKAT and its comparison with other
meta-models are presented in [P�O93].

The introduction of the m2-objects adds a level of abstraction to the model that encapsulates the schema
as �rst-class objects. The bene�t of this approach is that the entire model is consistently and uniformly
de�ned within itself. Every object has well-de�ned behavior and, therefore, we can uniformly apply behaviors
to the higher-level objects.

2.6 Temporality

Temporality is introduced into TIGUKAT through an extensible set of primitive time types. A rich set of
behaviors are de�ned on these types to model the various notions of time elegantly [GM93].

We use the concept of a timeline to represent an axis over which time can be speci�ed. A timeline is
comprised of a collection of time references. A time reference is a means by which time can be speci�ed
(e.g., 5 seconds, t3, July 31, [1967,1968], 3 years, 9:17:54:20). We have identi�ed three basic types of time
references: a time instant (moment, chronon, etc.), a time span (duration), and a time interval. These are
used to construct instant timelines, span timelines, and interval timelines.

We can model di�erent kinds of timelines depending on (i) their domain (discrete, dense, or continuous),
(ii) their boundedness (bound or in�nite), and (iii) their ordering (linear orbranching). Any combination of
these three features is possible in forming a timeline. This gives applications built on TIGUKAT substantial

exibility in choosing timelines to suit their needs.

Behavior histories are used to manage the properties of objects over time. A subtype of T behavior is
introduced to specialize behaviors with temporal qualities for managing histories. Instances of this subtype
are called temporal behaviors. Temporal behaviors specialize non-temporal ones and, thus, encompass all the
functionality of non-temporal behaviors. This introduces temporal transparency in the sense that a temporal
behavior can be used anywhere a non-temporal behavior is expected. In other words, a user unconcerned
with temporality can use temporal behaviors as if they were non-temporal. This has the bene�t of integrating
temporal applications smoothly into an existing system.

Temporal behaviors have the ability to manage valid time histories (when a value for the behavior is valid)
and transaction time histories (when a value for a behavior is committed to the objectbase) independently.
Our approach adheres to the well recognized orthogonal nature of the these two times [SA85] and allows us

10

to support valid time, transaction time, and bitemporal models.

2.7 An Example System Design

In this section, we present the design of a simpli�ed geographic information system (GIS). This example
is used throughout this paper to demonstrate various features of TIGUKAT. The GIS example is selected
because it is usually listed among the application domains which require the advanced features o�ered by
object-oriented technology.

T_object

T_geometricShapeT_dwellingT_person T_location

T_house T_displayObject

T_window

T_atomic T_behavior T_type

T_function T_collection

T_date

T_zone

T_water T_transport T_altitudeT_land

T_forest T_clear

T_developed

T_pond T_river T_road

T_map

T_null

Figure 5: Type lattice for a simple geographic information system.

A type lattice for a simpli�ed GIS is given in Figure 5. The example includes the root types of the various
sub-lattices from the primitive type system to illustrate their relative position in an extended application
lattice. The GIS example de�nes abstract types for representing information on people and their dwellings.
These include the types T person, T dwelling and T house. Geographic types to store information about
the locations of dwellings and their surrounding areas are de�ned. These include the type T location,
the type T zone along with its subtypes which categorize the various zones of a geographic area, and the
type T map which de�nes a collection of zones suitable for displaying in a window. Displayable types for
presenting information on a graphical device are de�ned. These include the types T displayObject and
T window which are application independent, along with the type T map which is the only GIS application
speci�c object that can be displayed. Finally, the type T geometricShape de�nes the geometric shape of
the regions representing the various zones. For our purposes we will only use this general type, but in more
practical applications this type would be further specialized into subtypes representing polygons, polygons
with holes, rectangles, squares, splines, and so on. Table 1 lists the signatures of the behaviors de�ned on
GIS speci�c types.

3 Implementation Considerations

The persistence issues related to the implementation of TIGUKAT are discussed in the next section. In this
section, we discuss some of the other issues that arise in the implementation of a uniform and generic object

11

Type Signatures

T location B latitude: T real

B longitude: T real

T displayObject B display: T displayObject

T window B resize: T window

B drag: T window

T geometricShape

T zone B title: T string

B origin: T location

B region: T geometricShape

B area: T real

B proximity: T zone! T real

T map B resolution: T real

B orientation: T real

B zones: T collectionhT zonei

T land B Pollutants: T collectionhT stringi
T water B volume: T real

B Pollutants: T collectionhT stringi
T transport B e�ciency: T real

T altitude B low: T integer

B high: T integer

T person B name: T string

B birthDate: T date

B age: T natural

B residence: T dwelling

B spouse: T person

B children: T person! T collectionhT personi
T dwelling B address: T string

B inZone: T land

T house B inZone: T developeda

B mortgage: T real

aBehavior was re�ned from supertype T dwelling.

Table 1: Behavior signatures pertaining to example speci�c types of Figure 5.

model such as TIGUKAT. There are three issues that we discuss: the implementation of the primitive type
system, behavior application, and the implementation of behavioral and implementation inheritance. For
more details, the reader is referred to [Ira93].

3.1 Implementation of Primitive Type System

TIGUKAT is implemented in g++ which is GNU's implementation of C++. However, since TIGUKAT has
a generic object model, there is no one-to-one mapping between TIGUKAT types and C++ classes (i.e., we
do not create a C++ class for each TIGUKAT type that is de�ned). Instead, there exists a single foundation
C++ class, TgObject, which is the principal template for instantiation of all TIGUKAT objects. That
is, every TIGUKAT object (type object, class object, behavior object, collection objects, function object,
instance object, atomic object, and other primitive or user-de�ned object) is an instance of this fundamental
C++ class. This approach ensures the uniform representation of all objects in the system since they may
each be treated as an instance of TgObject. The TIGUKAT type, class, etc. semantics is embedded within
the TgObject structure. Following this approach, the TIGUKAT model is implemented within itself.

From the structural viewpoint, every instance of TgObject comprises of an array of records as depicted
in Figure 6. These can be thought of as the attributes (data �elds) of that particular instance. TgObject

12

is a dynamic array where each element is either an integer, a character, or TgObject. Integers, reals and
characters are stored directly while all other objects, including the atomic objects such as sets, strings, bags,
lists and posets, have only references to them stored in the slots. This decision was made to ensure e�cient
use of memory. For any object, the �rst slot always contains a pointer to that object's type which was the
template used for its creation. Thus, in line with the model, every object carries knowledge about its type.

TgObject
Reference Pointer to the object’s type

String

Set

Integer

Character

Figure 6: Representation of the Generic TgObject Structure

To implement uniform treatment of everything as �rst-class objects, we have implemented di�erent kinds
of C++ object instances in the system viz. type objects, class objects, object objects, behavior objects,
function objects, collection objects and atomic objects. Although these template instances all all TgObjects,
they di�er in their structural contents. For example, a type object has a �xed number of slots dedicated
for maintaining information such as its corresponding class (implemented as a reference to another C++
instance which is a class object), its subtypes set (reference to a C++ set instance), its supertypes, etc.
We do not discuss the detailed data structures of each of these objects; we will only discuss the structure
of type objects since this information is relevant to the subsequent discussion on behavior application and
inheritance implementation.

3.2 Behavior Application

Dispatching is the process by which the application of a behavior on an object (message sending) is bound
to a particular function (implementation of that behavior). In the event that the applied behavior's imple-
mentation is not clearly evident (as a result of subtyping), the right function associated with that applied
behavior for the type of the receiver object must be invoked. This requires what is called dynamic binding.
Behavior application thus involves the retrieval and application of an appropriate piece of binary code that
is contingent on the receiver's type and the selector for that behavior.

Dispatching may be considered as a special case of what is called resolution [ZM90]. Resolution has been
de�ned as a runtime interpretation process that selects a particular value from a possibly ambiguous set
of values. Method dispatch (behavior application), hence, seeks to select an appropriate function object
(method) whose code needs to be executed, from a set of function objects each of which implement the
same named behavior object over di�erent types. In order to correctly make this decision some additional
information (actual type of the receiver and the method selector) relevant to the context is required.

13

1

2

7

0

3

4

5

6

8

9

T_type

Dispatch Cache

Corresponding Class

SuperLattice Set

Native Behaviors Set

Inherited Behaviors Set

Slots10

Cache Row

TgObject
Reference

SubTypes Set

SuperTypes Set

SubLattice Set

Figure 7: The Type Object's Structure

Since behavior application is such a fundamental operation in TIGUKAT, it is important to have an
e�cient dispatch implementation. We have opted for a relatively simple but fast mechanism at the cost of
bearing the consequential memory overhead. The system maintains a dispatch cache which consists of a slot
for each behavior-type pair that exists in the system. This cache is a statically allocated volatile structure
which needs to be reinitialized on program startup. The size of this lookup table is accordingly proportional
to the total number of unique behaviors in the system and the total number of types in existence. We
sacri�ce memory usage for quick response time during execution, but as proposed in [AR92, DMSV89],
an incremental coloring algorithm could be used to drastically reduce memory consumption. We have not
implemented this optimization in the current version of TIGUKAT.

Each entry in the dispatch cache is a function pointer to some executable code which implements that
behavior (column) for the concerned type (row). Every unique behavior has a unique integer mapping
associated with it. We call this integer mapping the method selector. The method selector provides access
to the appropriate column of the cache. That column is said to \belong" to the behavior. The addresses
stored in the slots of this column may be di�erent or identical, depending on which of the subtypes have
inherited the same implementation of that behavior and which have had that behavior rede�ned, overridden
or reassociated (associated with a di�erent function). The process of �lling the cache row with appropriate
values during the creation of a new type has been termed implementation inheritance and our system handles
it automatically up to a certain degree of complexity as discussed in the next subsection.

Behaviors may be reassociated with functions at any time (rede�nition of behaviors) and this makes it

14

imperative that we support the dynamic binding of behaviors and perform dispatch on the
y. Although it
is evident that static (compile time) dispatching is more e�cient [Cat91], this will seldom be possible in our
system. The reference to an object of a particular type may potentially be referencing an object of any of
this type's subtypes. The ambiguity about which function should be invoked can only be resolved at runtime
when knowledge about which type's instance is being referenced becomes available. Thus, the actual type of
a receiver object needs to be identi�ed prior to function execution. We note that although dynamic binding
might render static type checking di�cult it does not entirely preclude it.

slot-1

slot-n

slot-1

slot-n
recObj’s Structure

recObj Behavior methodSelector

Dispatch Cache
recType’s Structure

Type

Executable Code

Behavior Application

Figure 8: The Behavior Application Process

The behavior application process for computed functions in TIGUKAT involves the following procedure.
With reference to Figure 8, given an object, say recObj, as the receiver of a particular message, we extract
its type, say recType, which is readily available since every object knows its type. All types have knowledge
of their unique cache row (See Figure 7). From the applied behavior object we extract the method selector,
methodSelector. This integer value indexes into a unique column in the dispatch cache. The slot in the
determined row and column contains the address of the function code to be executed. The list of arguments
passed to the behavior is supplied to the function after relevant type checking is done. Behavior application
is conveniently reduced to the execution of a single line of code:

JMP (recObj ! recType ! dispatchCache[methodSelector])
where recObj is a pointer to the object on which the behavior is to be applied (receiver object reference),
recType is the receiver object's type, dispatchCache is the matrix of executable addresses andmethodSelector
gives access to the appropriate column in the dispatch cache. Therefore, the two basic requisites for binding
an executable piece of code to the applied behavior at runtime are the type of the receiver object and the
method selector for the behavior.

3.3 Behavioral and Implementation Inheritance

As indicated in Section 2.1, two kinds of inheritance are supported by TIGUKAT: behavioral and implemen-
tation inheritance. The implementation strategy for behavioral inheritance (subtyping) involves taking the
union of the interface sets of all the types declared as immediate supertypes of the new type being created.
This set forms the contents of the new type's inherited set and comprises the minimum set of behaviors
that all objects of this type should conform to. The nature of the functions that these behaviors have been

15

associated with is of no consequence to the behavioral inheritance mechanism. The implemented algorithm
iterates through the relevant interfaces and selects all the behaviors with unique signatures as candidates for
insertion into the new type's inherited set. This is a relatively straightforward technique.

Implementation inheritance facilitates code reuse by ensuring that all code is at a level where the maxi-
mum number of types can share it [ABD+89]. If only single inheritance is present, the inherited set of the
new type is precisely the contents of the interface set of its sole supertype. No con
ict resolution is necessary
and all entries in the dispatch cache and the supplementary cache are merely duplicated in the row allocated
for the new type for the complete set of inherited behaviors. This implies that all implementations (function
addresses) for the inherited set of behaviors are inherited too. However, the type implementor7 has the
liberty to reassociate any or all of these inherited behaviors.

With multiple inheritance, the situation is more complex since con
ict resolution has to take place.
Figure 9 depicts an inheritance graph with multiple subtyping. The arrows indicate a subtyping relationship
from the tail to the head and the dotted arrow indicates an instance of the type. The dashed boxes contain
the interface sets of the corresponding types while the matrices shown as DC and SC are the dispatch cache
and the auxiliary cache, respectively. The auxiliary cache SC is a bit cache that records whether a function is
stored or computed. Execution of the stored function simply sets or gets the contents of one of the receiver's
slots without executing any code. In this case, the slot number, rather than the function address, is stored
in DC.

Consider the GIS example that we introduced earlier. We create a new type T marsh, as a subtype
of T land and T water, with the native behaviors B drainageRate (to calculate the rate of water leaving
or entering the marsh) and B DuckPop (to store the population of ducks in the marsh). This inheritance
structure has a clash in behaviors that the system is unable to resolve automatically and requires the
type implementor's intervention. The con
ict resolution policy fails because the behaviors B setPollutants

and B getPollutants are de�ned in the interfaces of both the direct supertypes (T land and T water are
immediate supertypes of T marsh and have con
icting implementations associated in each of these types,
being computed in T water but stored in T land (as depicted in auxiliary cache SC). We have assumed that
the type implementor opted for the stored implementations to be inherited and therefore each instance of
T marsh requires a total of three slots: slot 0 holds the reference to the type, slots 1 holds the reference to
the collection of pollutants, and slot 2 holds the value of the duck population.

We iterate over each of the behavior objects in the inherited interface of T marsh generated during behav-
ioral inheritance. If a behavior exists in only one supertype's interface, this signi�es a con
ict-free condition;
thus no con
ict resolution is required. The implementation for that behavior may be safely inherited to-
gether with its associated function (stored or computed). The appropriate entry in the supplementary cache,
indicating a stored or computed association, is inserted. If the association is with a computed function then
the address of that function is also inserted into the dispatch cache. All the stored functions will possess a
NULL entry in the dispatch cache until class creation time. At that time, slots will be assigned to all the
stored functions, one slot per pair of set-get accessors. This may require a reallocation of slots to behaviors
which is entirely system managed.

For each con
icting behavior, the con
ict resolution policy has to be applied. The supplementary cache
values for that behavior are examined. If they happen to indicate a computed function for all the con
icting
supertypes, the values of the addresses of the functions from the dispatch cache are examined. If these are
identical for each of the types in the set of con
icting supertypes, then this behavior's implementation is
safely inherited and the corresponding address is inserted into the dispatch cache. A computed indication is
placed in the supplementary cache.

If the con
icting behavior is implemented by a stored function in all the entries for the supertypes, the
corresponding value of T function is examined for each type. If these match, then a stored indicator is
placed in the supplementary cache and a NULL is entered into the dispatch cache. Recall that for all the

7We identify three classes of users. The type speci�er is the person who designs the inheritance hierarchy for the user
application. The type implementor is the one who actually implements this required hierarchy using TDL. The end user refers
to the person or applicationprogram that may query the existing system and instantiate new objects, but may not be authorized
to modify the existing type structure.

16

1 2 3 4 5 6

2

0

1

T_zone

T_waterT_land

[1] B_setPollutants

[2] B_getPollutants
[3] B_volume

T_marsh

T_marsh’s instance

1

1

1

1

DC

2 2

T_zone

T_land

T_water

T_marsh s

c

s c c s s

ss

1 2 3 4 5 6

cc

SC

[4] B_drainageRate

[5] B_setDuckPop

[6] B_getDuckPop

[1] B_setPollutants

[2] B_getPollutants

Figure 9: Implementation Inheritance Requiring Con
ict Resolution

stored functions, the dispatch cache will hold the corresponding slot number to access (an identical value for
each paired set-get) instead of the address of the executable code. These slot numbers will only be inferred
and allocated during class creation, at which time it will be possible to determine the total number of all
the associated stored functions.

In the event that an inherited behavior is associated with a stored function in one of the supertypes and
a computed function in another, or there is mismatch in the values of function pointers, then no con
ict
resolution is possible by the system and a NULL is entered in both caches. It is the type implementor's
responsibility to associate this behavior with an appropriate implementation of his choice or to specify which
of the supertype's implementations is to be inherited. A message requesting intervention will be displayed.
The cache values for this behavior must be inserted (i.e. each behavior must be associated with some
function) before class creation in order that the newly established type be considered functionally complete.

4 Persistence Model

A fundamental decision governing the implementation of an OBMS is the strategy employed for managing
persistent objects. Persistence is de�ned as the ability of an object to survive across multiple application
program executions and a persistent object is one that has this property. The persistence model of TIGUKAT
adheres to the following principles:

17

1. Persistence is transparent to the user. TIGUKAT Query Language (TQL) and TIGUKAT Control
Language (TCL) provide a declarative speci�cation for indicating that an object is persistent. Users
do not perform any explicit input/output operations, nor do they open and close �les. TIGUKAT
coordinates with the low-level storage manager to provide persistence transparently.

2. Persistence is orthogonal to the type of an object [AB87]. A type can be made persistent or transient.
The instances of a type can be either persistent and transient. The only dependency is that if an object
is made persistent, then its type must also be made persistent because an object cannot exist without
a type. These are described as persistence side-e�ects (PSEs) below.

3. Persistence is independent of the query model [AB87]. Queries do not di�erentiate between transient
and persistent objects. Both are queried in a uniform way using the same language constructs. This
principle is followed in the development of a programming language interface to TIGUKAT.

Five basic approaches to persistence have been identi�ed [ZM90]. The �rst strategy requires that a
decision about persistence be made prior to object creation. Depending on whether a persistent or transient
object is needed, an appropriate object creation routine is invoked on the object. Thus, there are separate
routines for creating transient and persistent objects.

The second approach is called reachability based persistence. This methodology, pioneered in PS-Algol
[ABC+83] and incorporated by O2 [BDK92], requires that persistent objects hang o� a persistent root via
a direct or indirect reference. When an object o is made persistent, all objects in the transitive closure (i.e.,
reachable from o) are made persistent. Object o becomes a root for persistence. In this scheme, every object
reachable from a root is made persistent or transient when the root is made persistent or transient.

The third approach is allocation based persistence. This approach restricts the persistence of an object by
requiring it to be allocated within a persistent container (collection) during object creation. This requires the
existence of a persistent storage space with variables naming locations within that space. Objects written
into persistent variables are guaranteed to be persistent as long as they are maintained in the persistent
variable. ObjectStore [LLOW91] takes this approach, although it renders garbage collection di�cult due to
the dangling references problem.

The fourth approach is type-based persistence where some types are declared to be persistent and an
object is persistent if it is an instance of a persistent type. The E language [RC89, SCD90, RCS89] uses a
similar approach and maintains a parallel hierarchy of persistent and corresponding non-persistent types.

The �fth approach (which we follow) associates persistence with individual objects and requires explicit
declaration of persistence, which may occur anytime during an object's existence. We de�ne a primitive
behaviors B persistent and B transient on T object that are applicable to all objects in the system. This
behaviors coerce the receiver object to be persistent or transient, respectively. The TIGUKAT user languages
provide declarative constructs for making individual objects or collections of objects persistent or transient.
The system translates these requests to applications of B persistent or B transient on the a�ected objects.

We opted for object based persistence because it best maintains the uniformity of object access and does
not restrict the use of types for persistent or non-persistent purposes. Any object created during a session
(either a query session or an application program execution session encapsulated as a transaction) can be
explicitly made persistent (or transient) at any time during the session. Thus, all TIGUKAT objects are
potentially persistent .

The support for persistence is a behavioral extension to the model. Behaviors B persistent and B transient

are added to the type T object and, thus, are applicable to any object. This clari�es the fact that all objects
are potentially persistent (or transient) in TIGUKAT. The language constructs for persistence in TQL and
TCL invoke these behaviors.

TIGUKAT queries operate on collections and return collections as results. Since collections are objects,
we permit the existence of persistent as well as transient collections. Transient and persistent collections can
contain a mixture of both transient and persistent member objects. The transient members of a collection
must cease to exist at the end of a particular session, even if the collection is persistent. On the other
hand, the persistent members of a collection must continue to exist in their respective class extents after a

18

particular session ends. This is true even if the collection is transient and ceases to exist at the end of a
session. This does not cause a problem since the persistent objects in a transient collection reside in the
(persistent) class associated with the type of these objects. Thus, these objects are available following the
session even if the collection is not. All collections generated as a result of query execution are initially
transient. The semantics of handling each case of transience and persistence of objects, collections, classes,
and types are described by implementations for the B persistent and B transient behaviors, which we discuss
below.

Coercing an object to be persist might result in persistence side-e�ects (PSEs), which propagates per-
sistence to type and class objects related to the original object. The persistence matrix shown in Figure 10
depicts the various alternative strategies involved in making a TIGUKAT object persistent. Reading across
rows, a \+" entry indicates a PSE while a \�" entry indicates PSE-free persistence (the diagonal entries are
not a concern and, therefore, are PSE-free). Making a type persistent is PSE-free. Its corresponding class and
instances, if they exist, are not required to be persistent. If a class object is made persistent, a PSE occurs
which makes its corresponding type persistent as well. However, the instances of this class do not need to be
made persistent. The �nal case is when a particular instance object is made persistent. This causes PSEs
that make both its class and its corresponding type persistent. This protects against the object being stored
as a persistent instance of a transient type and sometime later being erroneously accessed as an instance of a
non-existent type (if its transient type disappears in the meantime). The primitive types, classes, behaviors,
and functions are by default perpetually persistent and cannot be deleted. This is necessary for the integrity
of the system.

Type

Type Class Inst

Inst

Class

X

X+

+

- -

-

X+

Figure 10: The persistence matrix.

The compliment of the persistence matrix is the transience matrix (not shown). This matrix derives the
repercussions of making persistent objects transient (by applying a behavior B transient de�ned on T object

for example). The e�ects are precisely the opposite of those described in the persistence matrix (i.e. making
an instance transient will not e�ect its type or class, making a class transient does not e�ect its corresponding
type but all its instances will be made transient, and making a type transient will make its corresponding
class and all its instances transient).

This model of persistence is fairly low-level and the referential integrity between objects is a problem
to consider. In particular, when a transient object disappears, how are dangling references to this object
handled?

One approach is to o�oad the responsibility onto the application programmer who must update references
to transient objects before the end of a session. This approach is unacceptable for obvious reasons. Another
approach is to use reachability persistence, which disallows persistent objects to reference transient ones,
since, when an object is made persistent, the transitive closure of all objects reachable from that object
are made persistent as well. Reachability-based persistence is not useful in a uniform model like TIGUKAT
because conceptually, all objects in the entire objectbase are reachable from any object. Consider an arbitrary
object. Since every object knows its type, the type of the object is reachable and must be made persistent.
Every type knows its class and, therefore, the class is reachable and should be made persistent. Every class
knows its instances and all instances of that class are made persistent. Every type knows it supertypes and

19

subtypes and, thus, the class/instance persistence propagates over the entire lattice and makes all objects
persistent.

The approach that we use has the net e�ect of transforming transient objects into perpetually persistent
unde�ned objects at the end of a session (or transaction). This is always safe because unde�ned is an instance
of T null, which is a subtype of all types. The substitutability property allows us to use unde�ned anywhere
an instance of a supertype is used.

Operations on a TIGUKAT objectbase occur within a given user session (which will be modeled as a
transaction when the programming language is developed). A session de�nes a scope for the transience
of objects. There are save (commit) and quit (abort) statements that can be used in a session. In this
sense, a session serves as a simple,
at transaction model. At the end of a session, all transient objects are
logically replaced by the perpetually persistent unde�ned object. This can be e�ciently implemented by
pointer swizzling. That is, we modify the oid mapping so that it appears as though the transient object was
written to stable storage at the location where the persistent unde�ned object exists. Then, all persistent
objects that referenced the transient object will now reference the persistent unde�ned object and there will
be no dangling references.

In this approach, there is the potential for wasted stable storage when a persistent object is made
transient. The transformation to the persistent unde�ned object occurs as usual, but we must somehow
reclaim the storage occupied by the object when it was persistent. With a central oid to disk address
mapping we can simply update this mapping and reclaim the storage immediately. If, however, objects hold
the disk addresses directly, then there may be other persistent objects that reference the old disk address
and we cannot simply reclaim the space without updating these references. In this case, a garbage collector
can be used to manage reference counts and reclaim the storage after all references have been updated. In
the meantime, the storage must be transformed into a persistent unde�ned object so that objects referencing
it will not see the old persistent object, but rather the unde�ned object. This transformation is easily
implemented by encoding the information in the header of the old object on disk.

Our approach to single object persistence and the maintenance of the PSEs are described in the F makePersistent

and F makeTransient functions below that serve as implementations for the B persistent and B transient

behaviors de�ned on T object.

F makePersistent(o)

This is the implementation of the B persistent behavior de�ned on T object.

INPUT: An object o to be made persistent.

if object o is transient then
Call storage manager to write o to stable storage and update log
Apply B persistent to the type and class of o:

o.B mapsto.B persistent

o.B mapsto.B classof .B persistent

if object o is a class then
Apply B persistent to the associated type of the class:

o.B typeof .B persistent

endif
endif

The recursion of the F makePersistent implementation is ended by making primitive T type and primitive
classes C type and C class-class perpetually persistent. T type and C type represent the end of the type
chain while C class-class represents the end of the meta-class chain. Note that these are the minimal
primitive persistent objects. In practice, the recursion is ended much sooner because many more primitive
objects are perpetually persistent (like C class, for example).

20

At commit time (or the end of a session), the transaction management facility ensures that persistent
objects are written out to stable storage. No changes are made to persistent objects with respect to references
to transient objects. Dangling references are avoided by the transformation described above.

The implementation for the B transient behavior is as follows:

F makeTransient(o)

This is the implementation of the B transient behavior de�ned on T object.

INPUT: An object o to be made transient.

if object o is persistent then
Call the storage manager to mark object o transient and update log
if object o is a class then

Apply B transient to every member in the shallow extent of the class
endif
if object o is a type then

Apply B transient to the associated class of the type:
o.B classof .B transient

endif
endif

At commit time, all transient objects are replaced by the persistent unde�ned object. This ensures that
there will be no dangling references to the transient objects because persistent objects that reference the
transient object will now reference the persistent unde�ned object. Implementation issues of this approach
are discussed above.

The explicit deletion semantics for persistent and transient objects are closely related to the F makeTransient

implementation and the transient-to-unde�ned object transformation. The reason is that when an object is
explicitly deleted, there is still the problem of dangling references to consider. The B drop behavior de�ned
on T object can be used to explicitly delete an object. The deletion semantics is related to schema evolution
when the object to be dropped is part of the schema (i.e., a type, class, collection, behavior, or function).
Schema evolution is beyond the scope of this paper, but is addressed in [Pet94].

The only di�erence in the transient object and deleted object semantics is the timing of events. When an
object is deleted (whether it be transient or persistent), it is immediately replaced by the persistent unde�ned
object, rather than at the end of a session as is the case for transient objects. A simpli�ed implementation
of the B drop behavior for deleting objects is de�ned as follows and the similarities to F makeTransient are
apparent:

F deleteObject(o)

A simpli�ed implementation of the B drop behavior de�ned on T object.

INPUT: An object o to be deleted.

Call the storage manager to mark object o as deleted and update log
if object o is a class then

Apply B drop to every member in the shallow extent of the class
endif
if object o is a type then

Apply B drop to the associated class of the type:
o.B classof .B drop

21

endif
Perform schema evolution operations if o is a schema object

The single object persistence approach can be transitively applied to all objects referenced by the object
being made persistent. This can proceed any number of levels until the transitive closure is reached. Thus,
we can identify the boundaries for the transitive application of persistence. The lower bound is when only
a single object is made persistent (our approach). The upper bound is when all objects in the transitive
closure are made persistent (reachability persistence). In a �nite objectbase, there are a �nite number of
levels between these two boundaries. We call the lower limit 0-persistence, the upper limit n-persistence,
and any level between these two i-persistence. For example the persistent all construct of TQL and TCL
performs 1-persistence on a collection argument. That is, the collection and all of its members (1 level of
reference) are made persistent. We showed that in a uniform model like TIGUKAT, the transitive closure
from any object is the entire objectbase and so n-persistence is not useful.

5 Query Model and Language

An identifying characteristic of the TIGUKAT query model is that it is a direct extension to the object
model. In other words, it is de�ned by type and behavior extensions to the primitive model. We de�ne a
type T query as a subtype of T function in the primitive type system. This means that queries have the
status of �rst-class objects and inherit all the behaviors and semantics of objects. Moreover, queries are
functions and can be used as implementations of behaviors, they can be compiled, they can be executed,
and so on.

Incorporating queries as a specialization of functions is a natural and uniform way of extending the object
model to include declarative query capabilities. The major bene�ts of this approach are as follows:

1. Queries are �rst-class objects, meaning they support the uniform semantics of objects, they are main-
tained within the objectbase as another kind of object and they are accessible through the behavioral
paradigm of the object model.

2. Since queries are objects, they can be queried and can be operated on by other behaviors. This is
useful in generating statistics about the performance of queries and in de�ning a uniform extensible
query optimizer.

3. Queries are uniformly integrated with the operational semantics of the model and, thus, queries can be
used as implementations of behaviors (i.e., the result of applying a behavior to an object can trigger
the execution of a query).

4. The query model can be extended by subtyping T query. This can be used to specialize the notion
of queries into additional types that can be incrementally introduced and developed as new kinds of
queries are discovered. For example, we subtype T query into T adhocQuery and T productionQuery

and then de�ne di�erent evaluation strategies for both in the query optimizer. Ad hoc queries may be
interpreted without incurring high compile-time optimization strategies while production queries are
compiled once and executed many times.

The languages for the query model include a complete object calculus, an equivalent object algebra, and
an SQL3-like user language. The TIGUKAT object calculus is a �rst-order predicate language. Predicates
of the calculus are de�ned on collections (essentially sets) of objects and a calculus expression returns a
collection as a result. This gives the language closure. The calculus includes a function symbol for behavior
evaluation in order to incorporate the behavioral paradigm of the object model. This allows the speci�cation
of path expressions (or implicit joins) in calculus formulas. The calculus is object-creating and supports a
controlled creation and integration of new collections, classes, types, and objects into the existing schema.

22

The safety of the calculus is based on the evaluable class of queries [GT91], which is arguably the
largest decidable subclass of the domain independent class [Mak81]. We extend this class by making use of
equivalence (=) and membership (2) operators in queries for object generation. This alleviates the need of
explicit range speci�cations for those variables that can be generated from the given operators.

The TIGUKAT object algebra has a behavioral/functional basis as opposed to the logical foundation of
the calculus. Algebraic operators are modeled as behaviors on the primitive type T collection. Like the
calculus, the algebra is closed in that every algebraic operator works on collections and returns a collection
as a result.

The operators of the algebra include typical set operations, a collapse operator for
attening nested
collections, a select for returning objects that satisfy a predicate, an operator for applying a series of behaviors
to a collection of objects, an operator to project behaviors, an operator for unconditionally combining objects,
a join for combining objects based of a join predicate, a generating join for producing objects from other
objects and joining the generated objects with the ones from which they were generated, and a reduction
operator for separating joined objects into their original components.

The �rst-order expressiveness of the calculus, its safety, as well as the equivalence of the calculus and alge-
bra are proven elsewhere [Pet94, P�OLS94]. The following section describes the user language of TIGUKAT,
with a focus on its constructs for managing persistence and for querying the objectbase.

5.1 TIGUKAT Language

The main function of the TIGUKAT language is to support the de�nition, manipulation, and retrieval of
persistent (and transient) objects in an objectbase. The language consists of three parts: the TIGUKAT
De�nition Language (TDL), which supports the de�nition of meta-objects (i.e., types, collections, classes,
behaviors, and functions), the TIGUKAT Query Language (TQL), which is used to manipulate and retrieve
objects, and the TIGUKAT Control Language (TCL), which supports the session speci�c operations (open,
close, save etc.). We focus on TQL and TCL in this paper; the complete speci�cation of all three languages
is given in [PL�OS93b, Lip93].

The TIGUKAT query language (TQL) has a syntax based on the SQL3 select-from-where structure and
a formal semantics dictated by the TIGUKAT object calculus. Thus, TQL combines the power of declarative
query languages with object-oriented features in the forum of the international data-speak of SQL. The broad
acceptance of SQL as a standard query language in relational databases, together with the current e�orts
on SQL3 to extend the syntax and semantics with object-oriented features [Gal92] are the main motivations
for our SQL basis.

The semantics of TQL is de�ned in terms of the object calculus. In fact, there is a complete reduction from
TQL to the object calculus [Lip93]. In addition, TQL accepts path expressions (implicit joins [KBC+89]) in
the select, from, and where clauses. Object equality is de�ned on the primitive type T object, thus explicit
joins are also supported by TQL. The results of queries can be queried, since queries operate on collections
and always return a �nite collection as a result. Queries can be used in the from and where clauses of other
queries (i.e., nested queries). Objects can be queried regardless of whether they are persistent or transient.

Note that the syntax for the application of aggregate functions is not explicitly supported in the current
implementation of TQL. However, as the underlying model is purely behavioral, these functions are de�ned
as behaviors on the T collection primitive type, and can be applied to any collection including those
returned as a result of a query.

TQL consists of the four basic operations: select, insert, delete, and update, along with three binary
operations: union, minus, and intersect. In this paper, we only discuss the select, union, minus, and
intersect statements.

The basic query statement of TQL is the select statement, which has the following syntax8:

8The notation used throughout this section is as follows: all bold words and characters correspond to terminal symbols
of the language (keywords, special characters, etc.). Nonterminal symbols are enclosed between `<' and `>'. Vertical bar `j'
separates alternatives. The square brackets `[', `]' enclose optional material which consists of one or more items separated by
vertical bars.

23

< select statement >: select < object variable list >
[into [persistent [all]] < collection name >]
from < range variable list >
[where < boolean formula >]

The select clause in this statement identi�es objects to be returned in a new collection. There can be
one or more object variables of di�erent formats (constant, variables, path expressions or index variables) in
this clause. They correspond to the free variables in an object calculus formula. The into clause declares a
reference to a new collection that will hold the result. This collection can optionally be made persistent by
specifying the persistent keyword. This does not make the members of the collection persistent. In order
to do this, the all keyword must be speci�ed as well. If the into clause is not speci�ed, a new transient
collection is created. There is no reference to this collection and it disappears at the end of a query. In
this case, the result cannot be retained for later use by another query. It can only be printed to the screen,
for example. The from clause declares the ranges of object variables in the select and where clauses. Every
object variable can range over an existing collection or a collection returned as the result of a subquery. A
subquery is a nested select-from-where clause that can be given explicitly or speci�ed as a reference to an
existing query object. A range variable statement in the from clause is as follows:

< range variable > : < identifier list > in < collection reference > [+]
< collection reference >: < term > j (< query statement >)

The collection reference in the range variable de�nition can be followed by a plus `+'. The plus refers to
the shallow extent of a class, which is a collection of objects. The default is the deep extent for classes. The
term in the collection reference de�nition is either a constant reference, or a variable reference, or a path
expression.

The where clause de�nes a boolean formula that must be satis�ed by the objects returned by a query.
Boolean formulas have the following syntax:

< boolean formula >: < atom >
j not< boolean formula >
j < boolean formula > and < boolean formula >
j < boolean formula > or < boolean formula >
j (< boolean formula >)
j < exists predicate >
j < forAll predicate >
j < boolean path expression >

where an atom is de�ned as follows:

< atom >: < term > = < term > j < identifier > 2 < term >

and a term is either a variable reference, a constant reference, or a path expression.
Two special predicates are added to TQL boolean formulas to represent existential and universal quan-

ti�cation. The existential quanti�er is expressed by the exists predicate of the form:

< exists predicate >: exists < collection reference >

The exists predicate is true if the referenced collection is not empty. The universal quanti�er is expressed by
the forAll predicate, which has the following structure:

< forAll predicate >: forAll < range variable list > < boolean formula >

The syntax of the range variable list is the same as in the from clause of the select statement. It de�nes
variables that range over speci�ed collections. The boolean formula is evaluated for every possible binding

24

of the variables in this list. Thus, the entire forAll predicate is true, if for every element in every collection
in the range variable list, the boolean formula is satis�ed.

The last component of the boolean formula de�nition is the boolean path expression de�ned simply as:

< path expression > = TRUE=FALSE

To avoid such an arti�cial construct, we include a boolean path expression in the de�nition of a TQL
formula under two conditions. First, all invoked functions are side-e�ect-free and second, the result type of
the entire path expression must be a boolean type.

The following queries on the GIS example objectbase illustrate the expressive constructs of TQL and
how the persistence of results are speci�ed.

Example 5.1 Return the zones that are part of some map and are within 10 units from water. Project the
result over B title and B area. Place the result into a persistent collection called L
oodZones and make
all members persistent.

select o[B title;B area]
into persistent all L
oodZones
from p in C map, o in p:B zones(), q in C water
where o:B proximity(q) < 10

Example 5.2 Return pairs consisting of a person and the title of a map such that the person's dwelling is
in the map. The result is a transient collection that disappears at the completion of the query.

select p; q:B title()
from p in C person, q in C map
where p:B residence ():B inZone() 2 q:B zones()

The following is an example of a re
ective query and illustrates that no new constructs are needed in the
language to query the schema.

Example 5.3 Return the types that de�ne the behavior B age with the same implementation as one of its
supertypes. Place the result into a persistent collection called L inheritedAgeTypes, but do not make the
members persistent.

select t
into persistent L inheritedAgeTypes
from t in C type, r in t.B supertypes()
where B age 2 t:B interface() and B age 2 r:B interface()

and B age:B implementation(t) = B age:B implementation(r)

TQL also supports three binary operations: union, minus, and intersect. The syntax of these state-
ments is speci�ed below. The <collection reference> �eld can be speci�ed as a subquery or as a reference to
an existing (transient or persistent) collection.

< collection reference > union < collection reference >
< collection reference > minus < collection reference >
< collection reference > intersect < collection reference >

TQL has a proven equivalence to the formal languages making it easy to perform logical transformations
and argue about its safety. The theorems and proofs of equivalence are given in [Lip93].

The TIGUKAT control language (TCL) de�nes statements for controlling operations within an objectbase
session. In the absence of a computationally complete programming language, TCL serves to provide a scope
for execution and interaction with a TIGUKAT objectbase.

25

Since everything in TIGUKAT is treated as a �rst-class object, sessions are also represented by objects.
Speci�cally, session objects are instances of T session type which is a direct subtype of T object. Every
TIGUKAT user has at least one instance of T session which is referred to as a root session. Other sessions
can be opened and manipulated from this session by issuing session-speci�c TCL operations: open, close,
save (commit), and quit (abort). TCL also provides an assignment statement for creating object references
as well as two forms of a persistent operation whose syntax is as follows:

1. persistent <object reference list>

2. persistent all <collection reference>

The semantics of the �rst form is to make every object in the given object reference list persistent
according to the rules de�ned in Section 4. The second form requires the argument to be a collection. The
semantics is to make the collection persistent and all of its members persistent as well.

The inverse operations of the persistent statements are the transient statements whose syntax is as
follows:

1. transient <object reference list>

2. transient all <collection reference>

6 Other DBMS Functionalities

In addition to the powerful object and query models that TIGUKAT provides, the system is enhanced by a
number of other functions commonly associated with DBMSs. In this section, we provide a brief overview
of three functions that have been under development: query optimizer, the versioning scheme, and the
transaction manager.

6.1 Query Optimizer

The goal of query optimization is the choice of the \optimum" execution plan for a query from a set of
equivalent execution plans speci�ed as algebraic expressions. The set of equivalent execution plans are
obtained by the application of algebraic transformation rules and the optimum strategy is the one with the
lowest cost according to a cost function. Thus, in order to characterize a query optimizer, three things need
to be speci�ed:

1. The transformation rules that generate the alternative query expressions which constitute the search
space;

2. a search algorithm that allows one to move from one state (i.e., execution plan) to another in the search
space; and

3. the cost function that is applied to each state.

The TIGUKAT query optimizer [Mun93] follows the philosophy of representing system concepts as objects
and is along the lines of [LV91]. The search space, the search strategy and the cost function are modeled
as objects (see Figure 11). The incorporation of these components of the optimizer into the type system
provide extensibility via the basic object-oriented principle of subtyping and specialization.

The states in the search space are modeled as processing trees (PT) whose leaf nodes are references to
collections and non-leaf nodes denote behavior applications whose results are other objects. Those nodes
which correspond to algebraic operator behaviors return temporary collections as result.

Algebraic operators (e.g., B Select, B Join) are de�ned as behaviors of the T collection type. They
are modeled as instances (shown as dashed boxes in Figure 11) of type T algebra which is a subtype of

26

T_AdHoc F_ScanSelect

F_HashJoin

T_SearchStrat

T_RandomSS

T_EnumSS

...

T_AlgOp

T_Context

T_AlgEqRule

T_ActiveRule

B_Join

... ...

...

T_function

...

...

T_Production

T_query T_CostFunc

T_object

T_behaviorT_Rule

T_Algebra

B_Select

...
...

Figure 11: Optimizer as part of the type system

type T behavior. The implementation (execution) algorithms for these algebraic operators are modeled as
function objects (e.g., F HashJoin, F ScanSelect). These implementation functions cannot be used as nodes
of a PT, since these nodes should represent execution functions all of whose arguments have been marshalled.
Therefore, T AlgOp type is de�ned whose instances are functions with marshalled arguments and represent
nodes of a PT. In this fashion, each node of a PT represents a speci�c execution algorithm for an algebra
expression.

Search strategies are similarly modeled as objects, but separate from the search space. T SearchStrat is
de�ned as a subtype of type T function, and it can in turn be specialized. Figure 11 shows the specialization
of T SearchStrat into enumerated search strategies T EnumSS and randomized search strategies T RandomSS.
The algebraic transformation rules that control the movement of the search strategy through the search space
are implemented as instances of T AlgEqRule which is a subtype of T Rule.

Cost functions (instances of T CostFunc) are de�ned as special types of functions, making them �rst-class
objects. Each function is associated a cost through the behavior B costFunction. Application of this behavior
to a function object f (i.e., f:B costFunction) returns another function object g of type T CostFunc that
implements the computation of the cost of executing function f . This allows de�nition of parameterized cost
functions whose values are dependent upon a number of factors.

Modeling the building blocks of a cost-based optimizer as objects provides the query optimizer with the
extensibility inherent in object models. The optimizer basically implements a control strategy that associates
a search strategy and a cost function to each query.

6.2 Versioning

Traditionally, a version of a particular modeled entity (e.g., object, type, schema, objectbase, etc.) is
perceived as a state of that entity as it existed at a particular time during its evolution. Version control is the
ability to e�ectively and selectively manage versions of entities. For example, engineering design applications
may track versions of components that have been put into production, stock market and taxation analysis
applications may use versions of a futures model to evaluate \what if" scenarios and provide alternate futures
scenarios, collaborative systems may have di�erent design teams working on di�erent versions of an overall
design, and a system may even version the schema as it evolves so that old and new objects can coexist in the
system without having to perform conversions on the instances of the schema [SZ86]. Some work [Sci94] have

27

separated user-level versions from system-level versions and then limited the version model to encompass
user-level versions only. With uniform object models such as TIGUKAT, both user-level and system-level
versions can seamlessly coexist, and a single version model su�ces to support both. The version model
developed for TIGUKAT [PG�O] uniformly supports both user-level and system-level versions.

Temporal behaviors and branching time (i.e., branching behavior histories) are the framework for version
support in TIGUKAT. A behavior can be temporal or non-temporal. The non-temporal behaviors maintain
the most recent (i.e., snapshot) result while the temporal behaviors maintain a history of results as the
behavior changed over time. This history may be represented by a linear time-model or a branching time-
model. We propose to use the latter where each branch represents an alternate future (or version) of the
behavior history. The unique aspects and advantages of our approach are the following:

1. The model is general in that it can be applied to any history tracking system that incorporates branch-
ing time. For example, it can be used on both valid time and transaction time as long as (i) they
are modeled as histories and (ii) branching time is supported. Other systems that support valid and
transaction time histories include [DW92, RS91], however, branching time is not directly supported
in these systems (branching time is supportable in the model discussed in [DW92], but the burden of
developing a branching model is left up to the user).

2. A portion of a behavior history (called a version slice) can be de�ned by specifying a start time and
an end time on the history timeline. A version slice denotes the initial history of a temporal behavior
for a given version and only that portion of the original behavior history is visible in the version. This
is useful for excluding parts of the behavior history from the version. Version slicing is unique in that
other temporal versioning models de�ne a version based on the entire behavior history up to a certain
end time.

3. Each version slice can spawn an independent branch on the timeline after the end of a slice. This is
useful since it allows the behavior to temporally evolve along this branch independent of any other
versions. We are unaware of any other model that allows version slices and versions to temporally
evolve independent of other versions in this manner.

4. A version slice can mirror or copy the portion of the history on which it is de�ned. A mirrored slice
re
ects all changes to the slice in both the original and the version (i.e., updates to the version or
the original within the slice are visible to both). A copied slice is a separate independent copy of the
original behavior history that becomes part of the new version (i.e., the original and the version have
their own copy of the slice and updates to the version or the original within the slice are not visible in
the other).

5. The version model is general and when incorporated into a uniform object model like TIGUKAT,
system-level versions such as versions of schema and versions of the entire objectbase can be modeled
in addition to user-level versions without the need for extensions. This uni�es user-level versions and
system-level versions within a single framework.

We have completed the design of the branching time version model, de�ned a uniform behavioral repre-
sentation of this model within TIGUKAT, and developed user language support for managing versions. The
versioning approach has been mapped to other approaches such as versions of types, versions of schema, and
versions of the entire objectbase, which are useful for schema evolution. This signi�es the uniform feature
of the version model as an underlying framework to support all types of versioning approaches. We are
currently undertaking the implementation of the version model.

6.3 Transactions

Conventional transaction management involves the synchronization of simple read/write access to a shared
database in an environment that is not failure-free. Both the transaction models and the synchronization

28

principles that are used in these environments are simple compared to those that are needed in OBMSs.
The complexity of the application domains that the OBMS technology is expected to serve is re
ected in the
type of transaction management support that they require. In these systems there is a recognized need for
more general and powerful transaction models [Elm92]. An overview of transaction management concerns
in OBMSs is given in [�Ozs94].

One important characteristic of the relational data model { which is the basis of most current commercial
systems { is its lack of a clear update semantics. The model, as it was originally de�ned, clearly spells out
how the data in a relational database is to be retrieved (by means of the relational algebra operators), but
does not specify what it really means to update the database. The consequence is that the consistency
de�nitions and the transaction management techniques are orthogonal to the data model. It is possible {
and indeed it is common { to apply the same techniques to non-relational DBMSs or even to non-DBMS
storage systems.

The independence of the developed techniques from the data model may be considered an advantage
since the e�ort can be amortized over a number of di�erent applications. Indeed, the existing transaction
management work on OBMSs have exploited this independence by porting the well-known techniques over
to the new system structures. During this porting process the peculiarities of OBMSs such class (type)
lattice structures, composite objects and object groupings (class extents), but the techniques are essentially
the same.

In TIGUKAT, we are taking a di�erent approach. It is our claim that in OBMSs, it is not only desirable
to model update semantics within the object model, but that it is indeed essential for the correct operation
of these systems. The arguments are as follows:

1. In OBMSs, what is stored are not only data but operations on data (which are called methods, be-
haviors, operations in various object models). Queries that access an object-oriented database refer
to these operations as part of their predicates. In other words, the execution of these queries invoke
various operations de�ned on the classes (types). To guarantee the safety of the query expressions,
existing query processing approaches restrict these operations to be side-e�ect free, in e�ect disallowing
them to update the database. This is a severe restriction that should be relaxed by the incorporation
of update semantics into the query safety de�nitions.

2. Transactions in OBMSs e�ect the type (class) lattices. Thus, there is a direct relationship between
dynamic schema evolution and transaction management. Many of the conventional techniques employ
locking on this lattice to accommodate these changes. However, locks (even multi-granularity locks)
severely restrict concurrency. De�nition of what it means to update an objectbase and the de�nition
of con
icts based-on this de�nition of update semantics would allow more concurrency.

It is interesting to note again the relationship between changes to the type (class) lattice and query
processing. In the absence of a clear de�nition of update semantics and its incorporation into the query
processing methodology, most of the current query processors assume that the database schema (i.e.,
the type (class) lattice) is static during the execution of a query [S�O90a].

3. Since TIGUKAT treats all system entities, including the database schema (i.e., meta-objects) and
queries, as objects that can themselves be queried, it is only natural to model transactions as objects.
However, since transactions are basically constructs that change the state of the database, their e�ects
on the database need to be clearly speci�ed.

Within this context, it should also be noted that the application domains that require the services
of OBMSs tend to have somewhat di�erent transaction management requirements both in terms of
transaction models and in terms of consistency constraints. Modeling transactions as objects enables
the application of the well-known object-oriented techniques of specialization and subtyping to create
various di�erent types of transaction managers. This gives the system extensibility.

4. Some of the requirements require rule support and active database capabilities. Rules themselves
execute as transactions which may spawn other transactions. It has been argued that rules should be

29

modeled as objects [DBM88]. If that is the case, then certainly transactions should be modeled as
objects too.

Consequently, we are now working to de�ne the update semantics of the TIGUKAT object model and are
investigating a powerful transaction model (which may better be called a work
ow following more current
terminology) that meets the requirements of the application domains that OBMSs are likely to serve and
is modeled in the system as objects. The concurrency control algorithms that are appropriate for these
models exploit the semantics of operations and provide
exibility to the type implementors in de�ning the
concurrent execution semantics. Our work in this area is relatively recent and more concrete results will be
reported in future papers.

7 Conclusions and Future Directions

In this paper, we provide an overview of the TIGUKAT objectbase management system under development
at the Laboratory for Database Systems Research at the University of Alberta. TIGUKAT has a uniform
behavioral object model where everything is a �rst-class object and the only means of accessing the objectbase
is through behavior application.

We have de�ned a query model for the system complete with an object calculus, an object algebra and
a user language. The user-language consists of a de�nition language, a session language and an SQL-based
query language. The interpreters for the �rst two and the compiler for the last one have been implemented.
An extensible query optimizer has been de�ned and a type system to support this architecture has been
implemented. The optimizer is being developed as a uniform extension to the object model and will therefore
be integrated with the model just like the query model has been.

Current work on the system is progressing along �ve lines: (1) the incorporation of time into the object
and query models, (2) the de�nition of the update semantics for the model, (3) the development of a
view manager, (4) the development of storage structures to support query optimization (i.e., indexing and
clustering issues), and (5) the de�nition of a transaction model and its incorporation into the model.

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada
under reserach grants OGP0951 and OGP8191 as well as by the Canadian Institute for Telecommunications
Research (CITR), a federally funded Centre of Excellence.

The authors thank the anonymous referees as well as Malcolm Atkinson for numerous suggestions that
improved the paper signi�cantly.

Technical reports and papers related to TIGUKAT are available viaWeb at http://web.cs.ualberta.ca/ ozsu/tigukat.html.

References

[AB87] M. Atkinson and P. Buneman. Types and persistence in database programming languages. ACM
Computer Surveys, 19(2):105{190, June 1987.

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An approach
to persistent programming. The Computer Journal, 26(4):360{365, 1983.

[ABD+89] M. Atkinson, F. Bancilhon, D.J. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In Proc. 1st Int. Conf. on Deductive and Object-Oriented
Databases, pages 40{57, 1989.

[AR92] P. Andr�e and J. Royer. Optimizing Method Search with Lookup Caches and Incremental Col-
oring. In OOPSLA '92 Conf. Proc., pages 110{123, 1992.

30

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database System, The
Story of O2. Morgan Kaufmann, 1992.

[Bla91] J.A. Blakeley. DARPA open object-oriented database preliminarymodeule speci�cation: Object
query module. Technical report, Texas Instruments, December 1991.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The Gemstone object database management system.
Comm. of the ACM, 34(10):64{77, October 1991.

[Car84] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and G. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages
51{67. Springer Verlag, 1984.

[Car86] L. Cardelli. A polymorphic �-calculus with Type:Type. Research Report 10, DEC Systems
Research Center, May 1986.

[Cat91] R. G. Cattell. Object Data Management. Addison Wesley, 1991.

[Coi87] P. Cointe. Metaclasses are �rst class: The ObjVlisp model. In OOPSLA '87 Conf. Proc., pages
156{167, October 1987.

[Day89] U. Dayal. Queries and views in an object-oriented data model. In Proc. 2nd Int. Workshop on
Database Programming Languages, pages 80{102. Morgan Kaufmann, 1989.

[DBM88] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: A knowledge model for an
active object-oriented database system. In Proc. of the 2nd Int. Workshop on Object-Oriented
Database Systems, pages 129{143, 1988.

[Deu91] Deux, O. et al. The O2 system. Comm. of the ACM, 34(10):34{48, October 1991.

[DMSV89] R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A Fast Method Dispatcher for Compiled
Languages with Multiple Inheritance. In OOPSLA '89 Conf. Proc., pages 211{214, 1989.

[DW92] U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Queries. In Proc. 8th Int.
Conf. on Data Engineering, pages 407{418, August 1992.

[Elm92] A.K. Elmagarmid (ed.). Transaction Models for Advanced Database Applications. Morgan Kauf-
mann, 1992.

[FKMT91] E. Fong, W. Kent, K. Moore, and C. Thompson. X3/SPARC/DBSSG/OODBTG Final Report.
Technical report, NIST, September 1991.

[Gal92] L.J. Gallagher. Object SQL: Language Extensions for Object Data Management. In Proc. 1st
International Conference on Information and Knowledge Management, pages 17{26, November
1992.

[GM93] I. Goralwalla and M.T. �Ozsu. Temporal extensions to a uniform behavioral object model. In
Proc. 12th Int. Conf. on Entity-Relationship Approach, pages 115{127, December 1993.

[GR83] A. Goldberg and D. Robson. Smalltalk{80: The Language and its Implementation. Addison
Wesley, Reading, Mass., 1983.

[GR89] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 2 edition, 1989.

[GT91] A.V. Gelder and R.W. Topor. Safety and translation of relational calculus queries. ACM
Transactions on Database Systems, 16(2):235{278, June 1991.

31

[Ira93] B.B. Irani. Implementation of the TIGUKAT object model. Master's thesis, Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada, 1993. Available as
University of Alberta Technical Report, TR93{10.

[KBC+89] W. Kim, N. Ballou, H.T. Chou, J.F. Garza, and D. Woelk. Features of the ORION Object-
Oriented Database System. In W. Kim and F.H. Lochovsky, editors, Object-Oriented Concepts,
Databases, and Applications. Addison Wesley, 1989.

[KC86] S. N. Khosha�an and G. P. Copeland. Object identity. In OOPSLA '86 Conf. Proc., pages
406{416, September 1986.

[Ken90] W. Kent. A Rigorous Model of Object Reference, Identity and Existence. Technical Report
HPL-90-31, Hewlett Packard Labs, April 1990.

[Lip93] A.P. Lipka. The design and implementation of TIGUKAT user languages. Master's thesis,
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, 1993.
Available as University of Alberta Technical Report TR93{11.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Comm.
of the ACM, 34(10):50{63, October 1991.

[LRV88] C. Lecluse, P. Richard, and F. Velez. O2, an Object-Oriented Data Model. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 424{433, September 1988.

[LV91] R. Lanzelotte and P. Valduriez. Extending the search strategy in a query optimizer. In Proc.
17th Int. Conf. on Very Large Databases, pages 363{373, 1991.

[Mak81] J.A. Makowsky. Characterizing Data Base Dependencies. In Proc:8th Colloquium on Automata,
Languages and Programming. Springer Verlag, 1981.

[Mun93] A. Munoz. Extensible query optimizer architecture for TIGUKAT. Master's thesis, University
of Alberta, Edmonton, Alberta, Canada, 1993. Available as University of Alberta Technical
Report TR94{01.

[MZO89] D. Maier, J. Zhu, and H. Ohkawa. Features of the TEDM object model. In Proc. 1st Int. Conf.
on Deductive and Object-Oriented Databases, pages 476{495, 1989.

[Osb88] S. L. Osborn. Identity, equality and query optimization. In K. R. Dittrich, editor, Advances
in Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science, pages
346{351. Springer Verlag, 1988.

[�OSP94] M.T. �Ozsu, D.D. Straube, and R. Peters. Query processing issues in object-oriented knowledge
base systems. In F.E. Petry and L.M. Delcambre, editors, Emerging Landscape of Intelligence
in Database and Information Systems. JAI Press, 1994. In press.

[�Ozs94] M.T. �Ozsu. Transaction models and transaction management in object-oriented database man-
agement systems. In A. Do�ga�c, M.T. �Ozsu, A. Biliris, and T. Sellis, editors, Advances in
Object-Oriented Database Systems. Springer Verlag, 1994.

[Pet94] R.J. Peters. TIGUKAT: A uniform behavioral objectbase management system. PhD thesis,
University of Alberta, Edmonton, Alberta, Canada, 1994. Available as University of Alberta
Technical Report TR94-06.

[PG�O] R.J. Peters, I. Goralwalla, and M.T. �Ozsu. A Uni�ed Version Model Based on Branching Time.
Submitted to 3rd Int'l Conf. on Information and Knowledge Management.

32

[PL�OS93a] R.J. Peters, A. Lipka, M.T. �Ozsu, and D. Szafron. An extensible query model and its languages
for a uniform behavioral object management system. In Proc. 2nd Int. Conf. on Information
and Knowledge Management, pages 403{412, November 1993.

[PL�OS93b] R.J. Peters, A. Lipka, M.T. �Ozsu, and D. Szafron. The query model and query language
of TIGUKAT. Technical Report TR93-01, Department of Computing Science, University of
Alberta, January 1993.

[P�O93] R.J. Peters and M.T. �Ozsu. Re
ection in a Uniform Behavioral Object Model. In Proc. 12th
Int. Conf. on Entity-Relationship Approach, pages 37{49, December 1993.

[P�OLS94] R.J. Peters, M.T. �Ozsu, A. Lipka, and D. Szafron. The query model and query language of
tigukat. In preparation, 1994.

[RC89] J. Richardson and M. Carey. Persistence in the e language: Issues and implementation. Software
| Practice & Experience, 19(12):1115{1150, December 1989.

[RCS89] J. Richardson, M. Carey, and D. Schuh. The Design of the E Programming Language. Technical
Report 824, University of Wisconsin, February 1989.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal
Constraints. In Proc. 10th Int. Conf. on Entity-Relationship Approach, pages 205{229, October
1991.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 236{246, May 1985.

[SCD90] D. T. Schuh, M. J. Carey, and D. J. DeWitt. Persistence in E Revisited - Implementation
Experiences. In Implementing Persistent Object Bases: Principles and Practice. Proc. Fourth
Int. Workshop on Persistent Object Systems, pages 345{359, 1990.

[Sci94] E. Sciore. Versioning and Con�guration Management in an Object-Oriented Data Model. The
VLDB Journal, 3(1):77{106, January 1994.

[Shi81] D. W. Shipman. The functional data model and the language DAPLEX. ACM Transactions on
Database Systems, 6(1):140{173, March 1981.

[Sny90] A. Snyder. An Abstract Object Model for Object-Oriented Systems. Technical Report HPL-90-
22, Hewlett Packard Labs, April 1990.

[S �O90a] D.D. Straube and M.T. �Ozsu. Queries and query processing in object-oriented database systems.
ACM Transactions on Information Systems, 8(4):387{430, October 1990.

[S �O90b] D.D. Straube and M.T. �Ozsu. Type consistency of queries in an object-oriented database system.
In Proc. ECOOP/OOPSLA '90 Conference, pages 224{233, 1990.

[Str86] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[SZ86] A.H. Skarra and S.B. Zdonik. The Management of Changing Types in an Object-Oriented
Database. In OOPSLA '86 Conf. Proc., pages 483{495, September 1986.

[SZ90] G. Shaw and S. Zdonik. A query algebra for object-oriented databases. In Proc. 6th Int. Conf.
on Data Engineering, pages 154{162, February 1990.

[WBW88] A. Wirfs-Brock and B. Wilkerson. An Overview of Modular Smalltalk. In OOPSLA '89 Conf.
Proc., pages 123{134, September 1988.

33

[WBW89a] A. Wirfs-Brock and B. Wilkerson. Object-Oriented Design: A Responsibility-Driven Approach.
In OOPSLA '89 Conf. Proc., pages 71{75, October 1989.

[WBW89b] A. Wirfs-Brock and B. Wilkerson. Variables Limit Reusability. Journal of Object-Oriented
Programming, 2(1):34{40, May/June 1989.

[YO91] L. Yu and S.L. Osborn. An evaluation framework for algebraic object-oriented query models.
In Proc. 7th Int. Conf. on Data Engineering, pages 670{677, 1991.

[ZM90] S. Zdonik and D. Maier. Fundamentals of Object-Oriented Databases. In S. Zdonik and D.Maier,
editors, Readings in Object-Oriented Databases, pages 1{36. Morgan-Kaufman, 1990.

A Primitive Type System

The following tables show the signatures of the behaviors for the non-atomic types (except the container
types), the signatures of the behaviors for the container types and the signatures of the behaviors for the
atomic types. The receiver type of a behavior is excluded because the receiver must be an object of a type
that is compatible with the type de�ning the behavior. The notation T collectionhTi is used to de�ne a
collection type whose members are of type T . The type speci�cations for the behaviors are the most general
types. Types for some of the behaviors are revised in the subtypes. For example, the result type of B self

is always the type of the receiver object and the result type of B new is always the membership type of the
receiver class.

34

Type Signatures

T object B self : T object

B mapsto: T type

B conformsTo: T type! T boolean

B equal: T object! T boolean

B notequal: T object! T boolean

B persistent: T object

B transient: T object

B newprod: T listhT objecti ! T listhT sethT behaviorii
! T object

T type B interface: T sethT behaviori
B native: T sethT behaviori

B inherited: T sethT behaviori
B specialize: T type! T boolean

B subtype: T type! T boolean

B subtypes: T sethT typei
B supertypes: T sethT typei
B sub-lattice: T posethT typei

B super-lattice: T posethT typei
B classof : T class

B tmeet: T sethT typei ! T type

B tjoin: T sethT typei ! T type

B tproduct: T listhT typei ! T type

T product B compTypes: T listhT typei

T behavior B name: T string

B argTypes: T listhT typei
B resultType: T type! T type

B semantics: T object

B associate: T type! T function! T behavior

B implementation: T type! T function

B primitiveApply: T object! T object

B apply: T object! T list! T object

B de�nes: T sethT typei
T function B argTypes: T listhT typei

B resultType: T type

B source: T object

B primitiveExecute: T object! T object

B basicExecute: T list! T object

B execute: T list! T object

B compile: T object

B executable: T object

Table 2: Behavior signatures of the non-atomic types of the primitive type system.

35

Type Signatures

T collection B memberType: T type

B union: T collection! T collection

B di� : T collection! T collection

B intersect: T collection! T collection

B collapse: T collection

B select: T string! T listhT collectioni ! T collection

B project: T sethT behaviori ! T collection

B map: T string! T listhT collectioni ! T collection

B product: T sethT collectioni ! T collection

B join: T string! T listhT collectioni ! T collection

B genjoin: T string! T listhT collectioni ! T collection

B setEqual: T collection! T boolean

B containedBy: T collection! T boolean

B cardinality: T natural

B elementOf : T object! T boolean

B insert: T object! T collection

B delete: T object! T collection

T bag B occurrences: T object! T natural

B count: T natural

Inherited behaviors re�ned to preserve duplicates

T poset B ordered: T object! T object! T boolean

B ordering: T behavior

Inherited behaviors re�ned to preserve ordering
T list B �rst: T object

B last: T object

B next: T object

B previous: T object

Inherited Behaviors re�ned to preserve duplicates and ordering
T class B deepExtent: T collection

B new: T object

T class-class B new: T type! T class

T type-class B new: T sethT typei ! T sethT behaviori
! T type

T collection-class B new: T type! T collection

T product-class B new: T listhT objecti ! T object

Table 3: Behavior signatures of the container types of the primitive type system.

36

Type Signatures

T atomic

T boolean B not: T boolean

B or: T boolean! T boolean

B if : T object! T object! T object

B and: T boolean! T boolean

B xor: T boolean! T boolean

T character B ord: T natural

T string B car: T character

B cdr: T string

B concat: T string! T string

T real B succ: T real

B pred: T real

B add: T real! T real

B subtract: T real! T real

B multiply: T real! T real

B divide: T real! T real

B trunc: T integer

B round: T integer

B lessThan: T real! T boolean

B lessThanEQ: T real! T boolean

B greaterThan: T real! T boolean

B greaterThanEQ: T real! T boolean

T integer Behaviors from T real re�ned to work on integers
T naturals Behaviors from T integer re�ned to work on naturals

Table 4: Behavior signatures of the atomic types of the primitive type system.

37

