An Extensible Query Optimizer for an Objectbase Management System*

M. Tamer Özsu Adriana Muñoz Duane Szafron
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1

Abstract

We describe an extensible query optimizer for objectbase management systems. Since these systems are expected to serve data management needs of a wide range of application domains with possibly different query optimization requirements, extensibility is essential. Our work is conducted within the context of TIGUKAT, which is a uniform behavioral system that models every system component as a first-class object. Consistent with this philosophy, we model every component of the optimizer as a first-class object, providing ultimate extensibility. We describe the optimizer architecture and how the optimizer components are modeled as extensions of a uniform type system.

1 Introduction

The early objectbase management systems (OBMSs) have been criticized [SRL+90] for their lack of declarative query capabilities (both languages and optimizers). These facilities are common in the state-of-the-art relational database management systems (DBMSs). The newer commercial OBMSs and research prototypes have started to include these capabilities, but their optimization is still not very well understood.

We have been studying query optimization issues for some time [SÖ90, SÖ95]. Our more recent work is within the context of the TIGUKAT project† [ÖP95]. TIGUKAT is an OBMS with an extensible object model characterized by a purely behavioral semantics and a uniform approach to objects which treats everything (including queries) as first-class objects. The query model consists of a calculus, an equivalent algebra and an SQL-based user query language [POL93a].

An important design consideration for an OBMS query optimizer, especially one which has a very flexible and extensible object model such as TIGUKAT, is extensibility. This allows the optimizer to accommodate different search strategies, different algebra specifications with their different transformation rules, and different cost functions. There are a number of reasons for extensibility [ÖB94]:

1. The application domains to be supported by the object-oriented technology have different query processing and optimization requirements. Therefore, the optimizer design should support easy customization of the system.

2. There is no consensus about an object algebra and there are many proposals. Furthermore, OBMSs should allow application-specific algebra operators to be defined and managed by the system (see, for example, [BG92]). The optimizer should be able to deal with these operators uniformly.

3. The optimization techniques for OBMSs are not fully developed and the alternatives are not completely understood. Thus, the techniques that are included in today’s optimizers are likely to change as research results emerge. It should be possible to easily incorporate these changes into the system.

4. Even in traditional query optimizers (i.e., relational ones which deal with a well-defined and fixed set of algebra operators), the entire set of transformation rules that are exploited by the optimizer in determining the alternative execution plans are unlikely to be fully specified [HCF+89]. Therefore, it is necessary to be able to define new rules for the optimizer as they are discovered.

In this paper we describe the architecture of an extensible query optimizer for OBMSs. Even though this work is conducted within the context of the TIGUKAT system, the general approach is valid for other OBMSs and the specifics hold for any system which uniformly models system components as first-class objects. The architecture described in this paper allows every aspect of the query optimizer (search strategies, search space as identified by the algebraic transformation rules, and the cost functions) to be extended. It incorporates an object-oriented approach to extensibility, representing components of the optimizer as objects.

The remainder of the paper is organized as follows. In Section 2, we review some of the other extensible optimizers. In Section 3 we summarize the TIGUKAT object model and the query model. This discussion is restricted to only

*This research is supported by the Natural Sciences and Engineering Research Council of Canada under grant OGP0591.
†TIGUKAT (tee-gu-kat) is a term in the language of the Canadian Inuit people meaning “objects.” The Canadian Inuits, commonly known as Eskimos, are native to Canada with an ancestry originating in the Arctic regions of the country.
those object model and query model characteristics that are relevant to the optimizer design described here. The overall architecture of the query optimizer is described in Section 4. Sections 5, 6, and 7, respectively elaborate on the extensible representations of the search space, the search strategy, and the cost functions. Section 8 describes how these pieces are put together in the design of the optimizer. This discussion is aided by the presentation of an example query creation and optimization scenario. We conclude, in Section 9, with a discussion of the advantages of our approach and the current state of our development.

2 Related Work

There has been significant amount of research on extensible DBMSs. EXODUS [CD86], Genesis [BBG+86], and Postgres [SK91] are examples of such systems. These provide customization of system components for individual applications. In this paper, our interest is in the extensibility and customization of the query optimizer rather than the customization of the overall system architecture.

Many existing OBMS optimizers are either implemented as part of the object manager on top of a storage system, or they are implemented as client modules in a client-server architecture. In most cases, the search algorithms, transformations rules and cost functions are "hardwired" into the query optimizer. Rule-based query optimizers [Fre87] provide a limited amount of extensibility by allowing the definition of new transformation rules. However, they do not allow extensibility in other dimensions.

The Open OODB project at Texas Instruments concentrates on the definition of an open architectural framework for OBMSs and on the description of the design space for these systems. Query processing in Open OODB [BMG93] is largely influenced by the extensibility goals of the Open OODB project. The query optimizer, built using the Volcano optimizer generator [GM93], is extensible with respect to algebraic operators, logical transformation rules, execution algorithms, implementation rules (i.e., logical operator to execution algorithm mappings), cost estimation functions, and physical property enforcement functions (e.g., presence of objects in memory). The search algorithms are built-in, however, and cannot be extended.

A quite different approach to extensibility is described in [MZD92], where the search space is divided into regions. Each region corresponds to an equivalent family of query expressions that are reachable from one another. The regions do not have to be mutually exclusive and differ in the queries that they can manipulate, the control (search) strategy that they use, or in the objectives that they want to achieve in query manipulation. For example, one region may have the objective of minimizing a cost function, while another region may attempt to put queries in some desirable form. Alternatively, one region may cover transformation rules that deal with simple select queries, while another region may deal with transformations for nested queries. Since a region incorporates a transformation strategy, it can be treated as the transformation of an input query to an equivalent output query. This is what allows movement between regions. There is a global control strategy to determine how the query optimizer moves from one region to another [MD93].

Since search strategies, transformations and optimizations can change from one region to another, the approach allows strategies to be changed within a single query.

Starburst is an extensible DBMS with an extensible query optimizer [HCF+89]. It extends SQL and allows user-defined extensions to the language. It also allows extensions to the transformation rules that are used during optimization. The rules are of the condition-action type and the base system provides three different classes of rules: predicate migration, projection push down, and operation merging. System implementors can either use these rules or define application-specific rules of their own. Starburst provides a limited set of search algorithms and does not allow their extension. Cost functions cannot be changed or extended either. Since the underlying model is relational, there is no need to extend the set of algebraic operators.

Our approach differs from all of these in that we use an object-oriented approach to extensibility that models each component of the query optimizer, listed above, as an object. This is similar to [LV91] in the general approach, but differs in the details and in the extent object-orientation is used as the fundamental means of extensibility. The incorporation of these optimizer components into the type system provides extensibility via the basic object-oriented principle of subtyping as we describe in the rest of this paper. Consequently, we are able to allow extensibility of all optimizer components.

3 TIGUKAT Object and Query Models

The TIGUKAT object model is defined behaviorally with a uniform object semantics. The model is behavioral in the sense that all access and manipulation of objects is based on the application of behaviors to objects, and the model is uniform in that every component of information, including its semantics, is uniformly modeled by objects and has the status of a first-class object. This uniformity provides reflection to the model [PO93].

The primitive type system of TIGUKAT is depicted in Figure 1. The primitive objects of the model include: types for defining common features of objects; atomic types (reals, integers, strings, etc.); behaviors for specifying the semantics of operations that may be performed on objects; functions for specifying implementations of behaviors over types; classes for automatic classification of objects based on type; and collections for supporting general heterogeneous groupings of objects. In the remainder of the paper, an identifier beginning with the prefix T_ refers to a type, C_ refers to a class, L_ refers to a collection, and B_ refers to a behavior. For example, T_person is a type reference, C_person is a class reference, L_persons is a collection reference, B_age a behavior reference, and a reference such as xyz without any prefix represents some other application specific reference. In this paper we discuss only a subset of the primitive types and behaviors that are relevant to this topic.

The access and manipulation of an object's state occurs exclusively through the application of behaviors. An important primitive behavior defined on objects is identity equality that compares two object references based solely on the identities of the objects they denote. This is the only type of equality that is defined in the primitive type system. In addition to types and classes, we define a collection as a general user-definable grouping construct. A collection is similar to a class in that it groups objects, but it differs in the following respects. First, no object creation may occur through a collection; object creation occurs only

2 The association of behaviors and functions form the support mechanism for overloading and late binding of behaviors.

3 Types and their extents are separate constructs in TIGUKAT.
The entire query model is defined in detail in [PLÔS93b]. In the remainder of this section we provide an overview.

The syntax of the TIGUKAT query language (TQL) is based on the SQL select-from-where structure, and the formal semantics is defined by the object calculus. Thus, it combines the power of relational query languages with object-oriented features.

The calculus has a logical foundation and its expressive power is outlined by the following characteristics. It defines predicates on collections (essentially sets) of objects and expressions represent collections of objects that satisfy these predicates to give the language closure. It incorporates the behavioral paradigm of the object model and allows the retrieval of objects using nested behavioral applications, sometimes referred to as path expressions or implicit joins. It supports both existential and universal quantification over collections. It has rigorous definitions of safety (based on the equivalent class of queries [GT91]) and typing which are compile time checkable. It supports controlled creation and integration of new collections, types and objects into the existing schema.

Like the calculus, the algebra is closed on collections. Algebraic operators are modeled as behaviors on the primitive type T_collection. They operate on collections and return a collection as a result. Thus, the algebra has a behavioral/functional basis as opposed to the logical foundation of the calculus. Composition over these behaviors brings closure to the algebra. We do not elaborate on the algebra operators in this paper. The algebra and calculus are proven to be equivalent in expressive power, meaning that all queries expressed in one language can also be expressed in the other. Space limitations do not allow us to include them here, but in [PLÔS93b] we prove the equivalence of our object calculus and algebra in both directions and present the reduction of the user query language to the calculus. Moreover, the safety of our languages is proven in that report as well.

4 Optimizer Architecture

Query optimization can be modeled as an optimization problem whose solution is the choice of the “optimum” state in a state space (also called search space). In query optimization, each state corresponds to an algebraic query execution schedule represented as a processing tree [KBZ86]. The state space is a family of equivalent (in the sense of generating the same result) algebraic queries that can be generated by applying the transformation rules defined for the specific algebra. The goal is to move from one state to another using a search strategy, applying a cost function to each state and finding the one with the least cost. Thus, to characterize a query optimizer three things need to be specified:

1. the transformation rules that generate the alternative query expressions which constitute the search space;
2. a search algorithm that allows one to move from one state to another in the search space; and
3. the cost function that is applied to each state.

We model each of these components as objects as described in Sections 5–7. TIGUKAT query model is a direct extension to the object model, defined by type and behavioral extensions to the primitive type system. We define a type T_query as a...
plans generated during optimization (B\text{genExecPlan}), the result of the query execution (B\text{result}), and some behaviors to store and access statistical data as well as behaviors that start the optimization (B\text{optimize}) and that generate a family of execution plans (B\text{ExecPlanFamily}). The details of these behavior definitions are omitted here and can be found in [Mun93].

Incorporating queries as a specialization of functions is a very natural and uniform way of extending the object model to include declarative query capabilities. The major benefits of this approach are:

1. Queries are first-class objects, so they support the uniform semantics of objects. They are maintained within the objectbase and are accessible through the behavior of the object model.

2. Since queries are objects, they can be used in queries, and behaviors can be applied to them. This is useful in generating statistics about the performance of queries and in defining a uniform extensible query optimizer.

3. Queries are uniformly integrated with the operational semantics of the model and thus, queries can be used as implementations of behaviors (i.e., the result of applying a behavior to an object can trigger the execution of a query).

4. The query model is extensible in a uniform way since the type T\text{query} can be further specialized by subtyping. For example, we can subtype T\text{query} into T\text{adHoc} and T\text{Production} and then define different evaluation strategies for each.

The TIGUKAT query optimizer follows the philosophy of representing system concepts as objects along the lines of [LV94]. We model the algebraic operators as objects, specifically as behaviors over the T\text{collection} type. In the type lattice, they appear as instances of type T\text{Algebra} which is a subtype of T\text{Behavior}. In addition, the three components of the optimizer, namely the search space (T\text{AlgOp} and T\text{AlgEqRule}), the search strategy (T\text{SearchStrat}) and the cost function (T\text{CostFunc}) are modeled as objects (see Figure 2). The incorporation of these components of the optimizer into the type system provides extensibility via the basic object-oriented principle of subtyping and specialization. In the following three sections we discuss the modeling of the components of the optimizer as part of TIGUKAT’s type system.

5 Representation of Search Space

As indicated earlier, compilation translates a query to a corresponding algebraic expression represented as an object algebra processing tree (OAPT), optimizing it and generating an execution plan. Similarly, B\text{execute} is re-implemented to submit the execution plan to the object manager for processing. There is the capability of storing the result of query execution so that it is returned the next time the query is posed without re-execution, allowing the amortization of optimization effort over multiple executions. In addition to the behaviors it inherits from T\text{Function}, T\text{Query} has native behaviors that return the initial (B\text{InitialOAPT}) and optimized OAPT (B\text{OptimizedOAPT}), the search strategy (B\text{SearchStrat}), the transformation rules used (B\text{Transformations}), the cost model function (B\text{CostModelFunc}), the family of execution
instances of `T_function`. For example, `F_hashJoin` is an object of type `T_function` that models the algorithm that implements the join algebraic operation `B_join` defined as a behavior on `T_collection`. This gives flexibility in redefining algebraic operators and in extending the algebra (e.g., by adding transitive closure for recursive query processing).

We cannot use these implementation functions as the nodes of an OAPT, however. The nodes of the tree should represent execution functions all of whose arguments have been marshalled. Therefore, we define `T_algOp` whose instances are functions with marshalled arguments and they make up the nodes of OAPT's. In this fashion, each node of an OAPT represents a specific execution algorithm for an algebra expression. Instead of defining `T_algOp` as an immediate subtype of `T_function`, we define it as a subtype of `T_context` which, in turn, is a subtype of `T_function`. In a sense, a `T_context` instance corresponds to delayed execution of a function. This allows further optimization possibilities. Since the nodes of OAPT's are instances of `T_context` (due to subtyping), we could relax the restriction that they be instances of `T_algOp` and represent the functions that implement behaviors in predicates of query expressions as nodes in the OAPT as well. This would open the possibility of optimizing the execution of the functions that implement behaviors together with algebraic operators in a query. Commonly called the method optimization problem, this is a serious concern in OBMS.

Since the nodes of OAPT's are instances of type `T_algOp`, to provide uniformity, we define the object `F_LeafAlgOp` to model the leaf nodes of the OAPT's. This object can be thought of as a container that holds a reference to one of the input collections of the query that the OAPT represents. `F_LeafAlgOp` objects model the delayed execution of the algebraic identity operator `B_Identity` that is defined as part of the interface of the type `T_collection`. Thus, all the nodes of an OAPT are uniformly modeled as instances of `T_algOp` rather than making an exception for the leaf nodes which correspond to collections.

An OAPT is recursively defined as an object of type `T_algOp` as follows: the root node of the OAPT is an algebraic operator of type `T_algOp` whose children are also of type `T_algOp` with the restrictions that no interior node can be the object `F_LeafAlgOp` and every leaf node is the object `F_LeafAlgOp`.

Instead of discussing the behaviors defined on `T_algOp` (see [Mum93]), we present the general approach with an example. Consider a geo-information system application that stores information about dwellings, the zones that these dwellings are in and the maps of these areas. Four types, among many, are defined: `T_map`, `T_person`, `T_dwelling`, and `T_zone`. `T_map` is a subtype of `T_displayObject` which models all displayable objects; the other types are direct subtypes of the root type, `T_object`. Using, TQL, the query "Return the maps which show the areas where senior citizens live" is expressed as

```sql
select o
from o in C_map
where exists (
  select p
  from p in C_person, q in C_dwelling
  where (p.B_age() >= 65 and q = p.B_residence and q.B_zone() in o.B_zones())
)
```

where the types over which behaviors are defined can be determined from the range variables. The algebraic expression of the same query is

```sql
Result ↔ C_map, p: C_person, C_dwelling, >
```

where `σ` indicates the selection algebraic operator, `C_map` is the target class of selection, `C_person` indicates that variable `p` ranges over class `C_person`, and `F` is the selection formula:

```
F = \forall p. B_age() >= 65 \land q = p.B_residence \land q.B_zone() in o.B_zones
```

Figure 3 shows the OAPT for this example. The first information in the box represents an object instance reference and the mapping to its type. Then the behaviors that are relevant to the subsequent discussion are listed.

The F in the figure is the formula p.B_age() >= 65 \land q = p.B_residence \land q.B_zone() in o.B_zones and is represented as an object of type T_formula.

As indicated before, the search space consists of a family of equivalent plans, each of which is represented as an OAPT. The equivalence of two OAPTs corresponding to the same query is established by means of the equivalence-preserving algebraic transformation rules. In [SO60], we define transformation rules for a less powerful algebra than the one supported by TIGUKAT. These rules are being extended for the new algebra specification.

To provide extensibility, we model these transformation rules as objects of type `T_algRule` which is a subtype of `T_rule`. Even though at this stage we have not yet added "active DBMS" capabilities to TIGUKAT, we have defined the type `T_rule` as an abstract supertype with subtypes `T_activeRule` and `T_algEqRule`. `T_activeRule` would, in the future, model ECA-type rules [DBM88] when active capabilities are added.

Matching rules to OAPTs is analogous to unification in logic programming where a two step process is used. The first step is a syntactic match based on identical symbols. Only if the first step succeeds is the second more computationally expensive match attempted. In logic programming the second step is the identification of a unifying substitution. In this case, the match is also based on semantics.

The application of rules by rule-based optimizers such as Exodus [GDS7] and Starburst [HCP89] optimizers is done by a pattern matching engine that matches subexpressions of a query against algebraic rules. Additionally, the firing of rules is dependent on the satisfaction of the conditions that involve user-defined functions. A major difference between the rules defined for those systems and the ones defined for TIGUKAT is that the rules for the former systems are based on operators of fixed arity while the rules for TIGUKAT are based on algebraic operators which can have varying numbers of arguments. In order to use those rule-based optimizers for the application of rules defined herein, their pattern matching engine would have had to be modified to handle algebraic operators which can have varying numbers of arguments. Considering the uniform manner in which the TIGUKAT optimizer is defined as an extension of the object model, it would be difficult to integrate these optimizers with the TIGUKAT system. Hence, the need for a special pattern matching engine for the TIGUKAT optimizer.

6 Modeling of Search Strategies

The search strategy determines the use of the rules for controlling the search. There are many alternative strategies,
ranging from static priorities to heuristics that determine which rules would be applied under various conditions.

In traditional optimizers, the search space (usually identified as a set of processing trees) and the search strategies that control the movement through this search space are coupled together. However, in an extensible query optimizer, they need to be decoupled. Consequently, we define $T_{searchStrat}$ as a subtype of type $T_{function}$ which can in turn be specialized. The type $T_{searchStrat}$ is an abstract supertype whose behaviors are implemented in its subtypes. In other words, its extent is empty. Figure 2 shows the specialization of $T_{searchStrat}$ into enumerated search strategies, T_{enumSS}, randomized search strategies, $T_{randomSS}$, and heuristics-based optimization strategies, T_{heurSS}. The search strategy component of the query optimizer can easily be extended by further subtyping $T_{searchStrat}$ when new search strategies are defined.

In this architecture, search strategies can be changed among queries. Before optimizing a query, the system selects the appropriate search strategy for the particular type of query under consideration. The flexibility of supporting various search strategies, each one best for a particular class of queries, enables the handling of different kinds of applications such as GIS, hypertext, and CAD/CAM by specializing T_{query} according to the different categories or classes of applications.

Since $T_{searchStrat}$ is a subtype of $T_{function}$, it inherits all its behaviors and defines new ones. The native behaviors defined on $T_{searchStrat}$ are B_{initSS} and $B_{optimal}$ which return the initial OAPT(s) at which the search starts and the "optimal" OAPT which is reached at the end. Optimal OAPT is selected from a set of "good" candidate OAPTs which are returned by B_{goal}. The three behaviors, $B_{nextState}$, $B_{stopCond}$, and B_{action} control the execution of the search algorithm.

Since $B_{searchStrat}$ is an abstract type, it does not implement any of these behaviors, leaving that to its subtypes (e.g., T_{enumSS} and $T_{randomSS}$). Through subtyping and the overloading of the behaviors defined on $T_{searchStrat}$, customization of the search strategy is possible. Due to space limitations, we cannot demonstrate the customization of search strategies with an example. We refer the reader to [Mun93].

7 Modeling of Cost Functions

The final optimization-related concept that needs to be incorporated into the model is the cost function. Cost-based optimization strategies apply a predetermined cost function (total time or response time) to an OAPT to calculate the cost of executing the corresponding query according to that OAPT. The issue is how these cost functions are modeled.

In TIGUKAT, each function is associated a cost through $B_{costFunc}$. Applying this behavior to a function object f returns another function object g of type $T_{costFunc}$ that implements the computation of the cost of executing function f. $T_{costFunc}$ is a subtype of $T_{function}$. When function g is executed, it returns the actual cost of executing function f. It is important to associate a cost function with each function instead of a cost value since the cost is often dependent on other factors that can be modeled as arguments to the cost function.

Algebraic operator context nodes (i.e., the instances of T_{algOp}) redefine the behavior $B_{costFunc}$ to return a function object of type $T_{costFuncAlgOp}$, which is a subtype of $T_{costFunc}$. This redefinition is necessary since the cost of executing algebraic operators requires the incorporation of various optimization issues into these functions. These issues are typical ones such as the availability of indexes over the collection on which these operators are defined, the statistical information about these collections, etc.

Calculation of the cost of executing one node of an OAPT is recursive in nature. The cost of a node is defined in terms of the costs of its children whose costs in turn depend on
the costs of their own children. Recursion naturally terminates at the leaf nodes. Consequently, the application of a function of type \texttt{T_costFunc} to the root context of an OAPT calculates the estimated cost of executing that query according to the execution plan represented by that OAPT. Thus, our definition of cost functions are based on graphs. Given an OAPT, its total time is calculated by summing up the costs of all of its nodes; the calculation of the response time is dependent on the shape of the OAPT (i.e., bushy trees vs. linear trees) and whether parallel execution is possible.

For an algebraic operator \(o \), its cost function \(f \) includes the cost of executing algebraic operator \(o \) and the cost of executing the children of \(o \) (if any). The cost of executing the algebraic operator (i.e., the application of the behavior \(\texttt{B_costFunc} \) to the OAPT node \(o \)) may include the cost of object creation since some of the operators, such as product, create objects with (possibly) new types (we call these operators \textit{target creating}). In these cases, the associated cost of creating a new type object and inserting it into the type lattice needs to be taken into account.

We model cost functions as instances of \texttt{T_costFunc}. Since \texttt{T_costFunc} is a subtype of \texttt{T_function}, it inherits all its behaviors. For a cost model function, \(\texttt{B_execute} \) computes the cost model equation whose algorithm is stored in \(\texttt{B_source} \). For each different cost function, the system creates a different instance of \texttt{T_costFunc}. For example, for a total time cost model function, the instance \(F_costTT \) is created as an object of type \texttt{T_costFunc}. This gives to the cost function component of the optimizer the extensibility property required to incorporate into

TIGUKAT query optimizer new cost model functions as they are found useful to measure the actions of a search strategy over the search space.

Each algebraic operator context node (of type \texttt{T_algOp}) has a different cost function because the algebraic node function incorporates optimization issues that potentially vary among the operators. For example, the union operator only needs the cost of accessing the instances of the collections \(C_i, C_j \) involved in the operation, while the select operator requires the cost of accessing the instances of the collection \(C_j \), in the presence of a predicate \(f \). This means that for each algebraic operation implementation (an instance of \texttt{T_function}), there is a corresponding cost function (an instance of \texttt{T_costFunc_algOp}) that computes the cost of executing that operation.

Because OAPT nodes are objects of type \texttt{T_algOp} which itself a subtype of \texttt{T_function}, they inherit the behavior \(\texttt{B_costFunction} \) from \texttt{T_Function}. The application of this behavior to an OAPT node \(o \) returns the function object of type \texttt{T_costFunc_algOp} that implements the function of the cost of executing the algebraic operation that node \(o \) represents.

The fundamental advantage of this approach is that each algebraic operator node provides individualized behavior for its cost function. For example, if the cost for some algebraic operators is considered negligible, it is easy to make the cost functions associated with those algebraic nodes return a constant value (i.e., zero) without having to modify the implementation of the cost model function to consider these exceptions. This gives more flexibility to the optimizer to be able to extend the cost function component for new algebraic operators as they are incorporated in the object algebra.

Modeling the building blocks of a cost-based optimizer as objects provides the query optimizer the extensibility inherent in object models. The optimizer basically implements a control strategy that associates a search strategy and a cost function to each query. The database administrator has the option of defining new cost functions and new search strategies or transformation functions for new classes of queries.

8 Putting it Together

TIGUKAT query optimizer is incorporated as a behavior \(B_optimize \) in the interface of type \texttt{T_query}. It is, therefore, modeled as an instance of type \texttt{T_behavior} (see Figure 2). This means that the query optimizer has the status of a \textit{first-class} object in the model.

The query optimizer behavior, \(B_optimize \), is responsible for applying a search strategy \(B_searchStrat \) to an initial OAPT, \(B_initialOAPT \), in order to produce an “optimal” OAPT, \(B_optimizedOAPT \), for a query object \(q \). In case the search strategy is a cost-controlled strategy, the cost model \(B_costModelFunc \) is used to measure the effects of the optimizer actions. All these behaviors are defined in the interface of the type \texttt{T_query} (see Section 3).

The implementation for \(B_optimize \) is:

\[
\begin{array}{l}
\text{F_optimize(T_query q; T_list< T_algOp>)} \\
\quad \text{return(} \\
\quad \quad \{ q.B_getSearchStrat()).B_execute(q, B_getInitialOAPT)) \}
\end{array}
\]

To demonstrate the utility of the architecture and the interaction of its components, we present the sequence of steps that would be followed in creating and optimizing the query object for the example TQL query given above. All TQL queries are either submitted within a programming language (embedded TQL) or during a user session. In this section we will only consider the latter, since embedded TQL is not yet available. For queries submitted during a session, we have a simple session control language, called TIGUKAT Control Language (TCL), that controls the creation of the appropriate objects and interprets the optimization commands.

1. Query object creation. The TCL interpreter creates the query (say \(q_1 \)) and then sets the TQL statement of the query as the source of this query.

\[
q_1 \leftarrow C_query \ B_new \ q_1.B_setSource(TQL_statement)
\]

Note that in TIGUKAT, for every behavior \(B_behavior \) whose value can be changed by users, a pair of behaviors, \(B_getBehavior / B_setBehavior \) is defined.

2. Search strategy specification. The architecture allows the user (or the application submitting the query) to set the search strategy and the behaviors associated with it. In this case, we assume that the system defaults are used:

\[
q_1.B_setSearchStrat(F_enumSS)
\]

3. Cost model specification. The architecture allows the user (or the application submitting the query) to set the cost model. In this case, we assume that the system defaults are used:

\[
q_1.B_setCostModelFunc(F_costTT)
\]

The cost model is only required when the search strategy is cost-controlled.

4. Compilation of the query object. The query is compiled by applying the behavior \(B_compile \) to query \(q_1 \):

\[
q_1.B_compile()
\]

The effect of applying the \(B_compile \) behavior is the following:
(a) Parsing and calculus-algebra translation

\[
\begin{align*}
opt &. B_{\text{set Name}}(F_{\text{elAlgOp}}) \quad (1) \\
opt &. B_{\text{set RevType}}(T_{\text{class}}) \quad (2) \\
opt &. B_{\text{set ArgTypes}}([T_{\text{class}}, T_{\text{class}}]) \quad (3) \\
opt &. B_{\text{set ResultType}}(T_{\text{collection}}) \quad (4) \\
opt &. B_{\text{set RevMbrType}}(T_{\text{map}}) \quad (5) \\
opt &. B_{\text{set ArgMbrTypes}}([T_{\text{person}}, T_{\text{dwelling}}]) \quad (6) \\
opt &. B_{\text{set ResultMbrType}}(T_{\text{map}}) \quad (7) \\
opt &. B_{\text{set Target Var}}(o) \quad (8) \\
opt &. B_{\text{set Constraint}}(f) \quad (9) \\
q1 &. B_{\text{set InitialOAPT}}(\opt) \quad (10) \\
q1 &. B_{\text{set Result}}(null) \quad (11)
\end{align*}
\]

The result of the translation of the calculus query into an algebra expression is the generation of an OAPT (referenced by \opt) and setting various behaviors (expressions (1) – (9) above). By and large these expressions are self-explanatory. The ones that require some explanation are (9) – (11).

The \(f \) in expression (9) is a reference to an object of type \(T_{\text{formula}} \) which represents the predicate of the selection operator. Statements (10) and (11) set the two behaviors of the query object \(q1 \). The result of the query is null at this point since it has not yet been executed.

(b) Algebraic Optimization

The second major action resulting from the compilation of a query is its optimization. This is accomplished by the application of \(B_{\text{optimize}} \) to \(q1 \):

\[
finaOAPT \leftarrow q1. B_{\text{optimize}}()
\]

The \(B_{\text{optimize}} \) behavior carries out plan optimization on \(q1. B_{\text{initialOAPT}} \) using the search strategy \(q1. B_{\text{searchStrat}} \). This behavior implements the control strategy for the plan optimizer. Since the search strategy in this example is an enumerative search algorithm, the cost of the initial OAPT is calculated using the technique described in Section 7. The cost of all the equivalent OAPTs that can be obtained by the application of transformation rules are calculated in a similar manner and the one with the least cost is selected as the \(\text{finaOAPT} \)\(^6\). This optimal OAPT is saved:

\[
q1. B_{\text{set OptimizedOAPT}}(\text{finaOAPT})
\]

which records the optimal execution plan as part of the query. This is useful both for later executions which do not need to be optimized and for being able to implement operators such as “explain” which informs the requestor of the optimal execution plan that the optimizer has chosen. These operators are now quite common in state-of-the-art DBMSs.

(c) Execution Plan Generation

This is the last step in the query processing methodology whereby the algebraically optimized OAPT is submitted to the object manager for further optimization and execution. This part is outside the scope of the current research. However, our ideas about this step are described in [SÖ05]. Basically, we propose to generate the query execution plan by replacing each individual algebra operator from the optimized OAPT with a “best” subtree of Object Manager (OM) calls. These object manager calls that are part of the set of low level object manipulation primitives that constitutes the interface to the OM can be modeled in TIGUKAT as function objects.

The architecture supports execution plan generation by providing the behavior \(B_{\text{genExecPlan}} \), which, when applied to \(q1 \):

\[
q1. B_{\text{gen ExecPlan}}()
\]

results in the set of execution plans being stored as part of the query. These execution plans can be accessed later by applying \(B_{\text{execPlanFamily}} \) to query \(q1 \).

5. Execution of the query object. The execution of the query may be invoked by the user explicitly if the query is already optimized. In the case of ad hoc queries submitted during a user session, the query is executed when it is compiled and optimized. Thus, the TCL interpreter applies the \(B_{\text{execute}} \) behavior to \(q1 \) and uses the result of that application as an argument to \(B_{\text{setResult}} \).

\[
q1. B_{\text{set Result}}(q1. B_{\text{execute}}())
\]

9 Conclusions

In this paper we describe an extensible query optimizer architecture for the TIGUKAT OBMS. Even though this research is conducted within the context of the TIGUKAT project, the general approach is applicable to other OBMS designs.

The identifying characteristic of our design is the use of the object-oriented philosophy in providing extensibility. The architecture defines all components of the optimizer (search space and transformation rules, cost function, and search strategies) as well as the queries themselves as first-class objects. This is consistent both with the TIGUKAT object model and the object-oriented design philosophy. In a sense, we are using the medicine that we normally prescribe to others. The end result, which we believe to be a significant advantage, is that both the query model and the query optimizer become direct extensions of the TIGUKAT object model which can be managed (stored, changed, queried) just like any other object.

The emphasis in this paper is on the extensible architecture of the optimizer. Therefore, we have not discussed details such as top-down versus bottom up evaluation of execution plans, logical and physical transformation rules, space management, etc. Some of these have been researched and will be presented in other papers and some of them are topics of on-going and future research.

The architecture described in this paper has been implemented. The implementation covers all the types required for the optimizer. There are a number of outstanding issues for the generation of a full-fledged optimizer. The most important is to couple this architecture with an optimizer generator that would provide a language for the specification of optimization alternatives. We intend to use a new version

\(^6\) This is an oversimplification; no query optimizer enumerates all the alternatives, rather the search space is pruned using one of a number of algorithms. That complication is ignored in this example.
of Volcano optimizer generator that is currently under development. This version will be suitable for object-oriented systems and will allow more extensibility than the earlier versions of Volcano. Other issues we work on include the specification of the full set of logical and physical transformation rules and the physical optimization at the storage system level (similar to [SÖ95]).

References

