
Performance Debugging in the Enterprise Parallel
Programming System

David Woloschuk
Paul Iglinski

Steven MacDonald
Diego Novillo

Ian Parsons
Jonathan Schaeffer

Duane Szafron

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

Abstract
Debugging parallel/distributed programs is an

iterative process, alternating between correctness
debugging and performance debugging.
Performance debugging involves identifying
bottlenecks in a parallel computation and
providing meaningful feedback to the user. The
quality of this feedback can play a major role in
the quick resolution of performance problems.
Many feedback systems provide the user with
endless streams of statistics, relying on the user to
do the interpretation. This paper discusses the
performance debugging facilities in the Enterprise
parallel programming system. Through visual and
aural cues, performance information is conveyed to
the user in an intuitive manner.

1 Introduction
Many of the papers on distributed debugging begin
with the message, explicit or implicit, that while
debugging sequential programs might be
characterized as a difficult art, debugging parallel
programs is a decidedly painful chore. The cause
of this drudgery is a combination of the special
problems encountered in distributed computing and
the lack of tools for coping with these inherent
difficulties.

The process of debugging a parallel program
can be divided into two sub-processes: correctness
(logic) debugging and performance debugging.

 The IBM contact for this paper is Jacob
Slonim, Centre for Advanced Studies, IBM Canada
Ltd., Dept. 21/894 844 Don Mills Road, North
York, Ontario M3C 1V7.

The first process is concerned with modifying a
parallel program so that it yields a correct solution
to a problem. The second is concerned with
modifying a parallel program so that it executes
faster than the sequential program, but remains
correct. Parallel programming systems (PPSs)
must provide support for both kinds of debugging.
Unfortunately, the literature concentrates on
correctness debugging at the expense of
performance debugging. This is unusual when
one considers that the major motivation for
parallel computing is increased performance.

Unfortunately, the two debugging processes
are not independent. In a perfect world, once a
correct parallel program is obtained, a series of
correctness preserving transformations would be
applied to the program to increase performance. In
reality, parallel performance improvements are
usually obtained by increasing the concurrency,
which often does not guarantee that correctness
will be preserved. Therefore, the debugging
process is an iterative one that shifts back and
forth between correctness debugging and
performance debugging. To support this process,
PPSs must either provide a single debugger that
supports both kinds of debugging or an integrated
uniform environment that supports a rapid and
seamless shift between debuggers.

 Enterprise is a PPS which supports the
various phases and activities of the software
development process: designing, coding,
compilation, execution, testing, performance
analysis and debugging [6]. The graphical user
interface provides a simple, uniform view of a
program that reflects the high-level programming
model of Enterprise [5]. The interface views of
performance and correctness debugging are

2

identical and are similar to all of the other views.
This makes performance debugging a natural
extension of the program development process. It
is not an auxiliary activity in Enterprise.

This paper focuses on performance debugging
in Enterprise. Correctness debugging is discussed
elsewhere [4]. Section 2 provides an overview of
performance tuning. Section 3 provides an
overview of the Enterprise programming model
and environment. Section 4 describes performance
analysis in Enterprise. Section 5 presents our
conclusions and an outline of future research.

2 An Overview of
Performance Debugging
Parallel program developers are often interested in
the execution behavior of a program as a function
of time. The behavior is a result of program
events, where an event marks a characteristic state
change that the programmer deems interesting.
For example, memory location accesses, register
changes and message sends between processors are
events. The goal of performance tuning is to use
the events to identify patterns and trends that arise
during execution and to use these patterns trends to
modify the program to improve performance.

Performance tuning can be divided into three
operations. The first is to acquire (capture or
record) the interesting events while the program is
running. The second is to analyze the events to
produce information about the run. The third is to
present this information to the user.

There are two methods to acquire and analyze
events. Real-time analysis is carried out at run-
time as events are captured. In post-mortem
analysis, events are recorded at run-time, but are
analyzed in a post-execution process.

Real-time analysis provides an instantaneous
view of the execution of a program and allows
users to interact with the program during
execution. This offers immediate feedback to
tuning operations performed by the programmer.
The primary problem with real-time analysis is
that the time between events can be small and
activity can be bursty. Multiple processors can
generate thousands of events per second requiring
that the analysis engine not only gather large
quantities of data from multiple sources, but also
process this data as fast as the events are generated.
Even if the hardware and software could cope, it is
not clear that the information could be presented to
the programmer in such a way that it could be

absorbed and understood. A second disadvantage of
real-time analysis is that it is difficult to take
advantage of long-term patterns and trends. That
is, real-time analysis tools usually focus on the
current few events.

In post-mortem systems, a program run is
used to generate a trace file that contains the raw
events. Unlike real-time systems, full knowledge
of the program run is available and trends that
emerge over time can be computed more easily.
Post-mortem systems can control the passage of
real time, allowing events to proceed as quickly or
slowly as the user desires. Presentation can be
enhanced, since during uninteresting periods the
user can fast forward to the next point of interest.
If events are happening too quickly to absorb, the
user can slow down the trace processing and even
step through a trace file one event at a time. The
major drawback to this approach is that a full trace
must usually be obtained before the user can view
program activity and do performance tuning. A
full second trace must then be produced before the
effects of the tuning can be viewed. This is
similar to the difference between program
development using language compilers and
interpreters. Most PPSs use a post-mortem
strategy for two reasons; it is simpler to
implement and it provides more user control.

Event acquisition and analysis have been well-
studied in the literature (for example, [7]). The
key factor in acquisition is to reduce the probe-
effect, the perturbation of the performance of a
program due to the execution of instrumentation
code. This intrusion can potentially alter the
execution of a program to the extent of altering
the results. The Enterprise approach to the probe
effect is described in [4], but this effect is less
important in performance debugging than it is in
correctness debugging.

This paper focuses more on the presentation
of data than on its acquisition or analysis.
Presentation is responsible for displaying
information to the user in a meaningful,
unambiguous and (sometimes) entertaining
manner. Limited only by the creativity and
imagination of designers, presentation tools often
employ clever and colorful means to convey
information. Animations and other graphical
displays not only grab attention, but are ideal in
capturing the dynamic nature of parallel programs.
Well-designed graphical displays with simple
visual cues and familiar symbolic representations
enhance a user's innate ability to process visual
information (for example, [7, 1]).

3

Despite the power of graphical visualization,
there are several limitations to such presentation
systems. First, if too much information is
displayed at one time, or if displayed information
is changed too rapidly, the user will miss fine
details that may be of interest. Second, there are
also practical limitations due to the hardware of
such systems. Graphical operations are
computationally expensive and are often severely
handicapped while executing on anything less than
the fastest of machines. Display monitor screens
are restricted in size and resolution, limiting how
much information can be displayed at any time.
These limitations are particularly troublesome in
systems where processors number in the
thousands. However, graphics is not the only way
of presenting information to the user in a non-
textual manner. Some interesting research has
been done to investigate auralization (sound) to
characterize the behavior of a program [2].

3 An Overview of Enterprise
Rather than provide a complete introduction to
Enterprise, this paper describes only the salient
features of its architecture and programming
model, with enough environment features to
understand the performance tuning tools.

3 . 1 The Enterprise Architecture

The Enterprise system consists of four
components: a pre-compiler, the Enterprise
executive, a communication manager and the
object-oriented user interface. The user provides
the remaining components: an Enterprise program
consisting of a modularized C program, together
with any user-required libraries and a meta-program
for describing the parallelism desired.

A uniform graphical user interface provides
the mechanisms for modularizing the components
of a user's program and selecting the desired
parallelization techniques. All the necessary com-
munication and synchronization code for parallel
execution on a selected group of workstations is
automatically inserted into the user's code by the
pre-compiler when the program is compiled. The
communication manager, currently PVM [3], is
transparent to the user. The Enterprise executive
takes care of all the process management and
synchronization. A conventional C programmer
need not learn any new language, language
constructs, or libraries of special functions for
handling inter-process communication or

heterogeneity concerns. This, in itself, is a major
step towards reducing programming errors which
result from the use of unfamiliar language
constructs or specialized library calls. A simple
menu-based graphical meta-programming model
for expressing parallelism is really the only new
symbolic construct for the programmer to learn.

The Enterprise model provides the user with
templates to implement various parallelization
techniques. As such, it can be categorized as a
template-based PPS. Arbitrary communication
patterns among concurrent processes are not
allowed. The process communication graph is
determined by the selected templates.

3 . 2 The Programming Model

In distributed systems with multiple agents
working together towards a common goal, the
method of communication is message passing.
The traditional programmer's view of message
passing involves four steps: pack the data, send
the message, receive the message, and unpack the
data. The Enterprise approach to message passing
is to make inter-process communication look like
standard C function calls, but without the
programming effort and synchronous semantics of
remote procedure calls. Enterprise executes
designated function calls concurrently. Consider
the following C code:

result = func(x, y);
/* other C code */
a = result;

If func is to be executed concurrently, then
Enterprise modifies the procedure call to pack the
parameters x and y into a message and sends it
to the processor that executes func. The caller
continues executing and only blocks and waits for
the function result when it is needed (a =
result) . A pending result that allows
concurrent actions has been called a future.

By letting the compiler generate the code to
do data packing and unpacking, programming
errors related to message packing are entirely
avoided. Any heterogeneity concerns, such as
byte-ordering schemes of the communicating
processors, are handled automatically. For
example, off-by-one errors in arrays are eliminated.

3 . 3 The Meta-Programming Model

There are no explicit references to parallelism in
the user's code. The parallelism is described
orthogonally in a meta-program constructed using

4

the graphical user interface. The meta-
programming model employs an analogy with a
business organization to represent different types
of parallelization techniques. There is an intrinsic
similarity between the units of a business
organization, all ultimately composed of
individual workers, and the groups of individual
processes executing in a distributed computing
environment. This analogy provides us with
consistent terminology and a metaphor for
building hierarchical parallel structures.

Every program entity in Enterprise, be it an
individual module or an integrated group of
modules, is called an asset. Each asset is one of:
Enterprise, Individual, Service, Receptionist,
Representative, Line, Department or Division.
Lines, Departments, and Divisions are composite
assets representing different parallelization
techniques. The user draws a simple hierarchical
asset diagram to represent a parallel program. A
new Enterprise program starts with an Enterprise
asset containing a single Individual. If the entire
program code is placed in this Individual, the
program will simply execute sequentially,
analogous to a one-person business. Four basic

operations are used to transform this sequential
program into a parallel one: asset expansion, asset
transformation, asset addition and asset replication.
Using the analogy, the simple business grows
incrementally into a complex organization.

Figure 1 shows the meta-program for a
simple program called CubeSquare. It consists of
a Department with a Receptionist, CubeSquare,
and two Individuals, Square and Cube, each
replicated twice. CubeSquare, Square and
Cube are C-code procedures. Square and Cube
are simple routines that contain a randomized sleep
to imitate a computationally intensive function
which takes a non-determinate amount of time to
execute. CubeSquare calls Square and Cube
in a loop and then sums these results in another
loop. If Cube and Square were indeed
computationally intensive functions, Enterprise
would deliver speedups. Clearly, even without the
randomized sleep, the message-passing and
process-management overheads in this minimalist
example overwhelm any parallelization gains.
This trivial example is used for illustration
purposes throughout this paper.

Figure 1. The meta-program for CubeSquare.

5

4. Performance Debugging in
Enterprise
Enterpr ise supports three techniques for
performance debugging. The first is a post-
mortem animation of the execution of a program
[5]. The second is a set of real-time performance
monitoring graphs [8]. The third is the ability of
Enterprise to automatically allocate resources
based on load. The first two will be discussed in
this section and the third will be described in a
future paper.

4.1 Event Acquisition in Enterprise

There are three acquisition modes that can be
selected at run-time. The first is a quiet mode
where no event information is gathered and no
analysis is performed. This mode is used for
production versions of the program where
performance tuning and program debugging are no
longer an issue. The second mode, performance
logging, is used to acquire real-time performance
data including event type, the ids of the

collaborating processes and an event time stamp.
The third mode is event logging and it is used to
capture complete events to a trace file for program
replay, animation, debugging and post-mortem
analysis. The event information gathered during
event logging is a super-set of the information
gathered during performance logging. The
additional information includes the contents of
messages (user parameter values).

The data acquisition mechanism is shown in
Figure 2. At run-time, if either logging mode is
enabled, each Enterprise asset sends a special event
logging message to the Enterprise executive
process whenever a message is sent between
assets. If event logging is enabled, the executive
process writes the gathered event messages to an
event log file. This file is used in the animation
and replay of a given program run. If performance
logging is enabled, the executive process also
forwards the event logging message to the
Enterprise interface process via a UNIX™
(trademark of Unix Systems Laboratory, Inc.)
pipe. The interface then parses the input from the
pipe to obtain the raw event data.

Figure 2. The Data Acquisition Mechanism.

6

Unlike event logging where event data is
written to a file, the performance logging
mechanism manages the data as it arrives in one of
two user specified modes: ordered or chaotic.
Ordered mode processing requires that the user
specify a delay time measured in seconds. In this
case, a buffer holds events taken from the pipe for
the delay time before processing them further.
This buffering compensates for mis-ordered events
that may arise as a result of uneven processor-to-
processor message delays introduced by a
congested network. The end result is that the
analysis will have a minimum delay time before
displaying its results. In the chaotic mode, events
are processed as they are taken from the pipe. If
events from different processors arrive out of order,
a warning message is displayed, but no further
action is taken and event processing continues.
Chaotic mode is sometimes useful since it reduces
the overhead associated with buffering and ordering
events and may be safely used in the presence of a
fast reliable network with low congestion.

4.2 Performance Analysis in Enterprise

Analysis is based on asset state information and
the history of each message sent between assets
during a program run. At any time during the
execution of a program, an Enterprise asset can be
in one of four states: busy doing user's work, idle
waiting for work, blocked waiting for a future to
be returned, or dead when it is finished all of its
work. In the best-case scenario, an asset will be
busy for most of its life. The history of a
message consists of which asset sent the message,
which asset received the message, the amount of
time the message was queued before it was
processed, and the amount of time required to
process the message. This simple information can
provide a great deal of insight into an Enterprise
program.

The processing method is essentially the same
for post-mortem and real-time analysis with the
chief difference being the source of the raw events.
For real-time processing, the events are obtained
from the UNIX pipe linking the executive process
and the interface. For post-mortem processing,
the events are obtained from a trace file generated
during an execution run. In either case, the first
step of the analysis process is to register the raw
events. Each raw event is accepted by the interface
and its effects are computed and registered in an
internal data structure that maintains statistics for
each asset and each message sent by an asset.

In real-time processing, an attempt is made to
register events at speeds matching actual execution
of the program. However, such a scenario is not
always possible. There are times when raw event
processing must be slowed, such as when
messages experience unusually long delays over a
network. In an effort to preserve some consistent
model of time, the performance analysis tool
maintains two timers. The first, real time, records
the true wall-clock execution time of the program
in seconds. The second, virtual time, records the
time based on event processing. If events can be
registered at a speed comparable to execution time,
real time and virtual time will proceed at an
equivalent rate. However, should the system be
unable to process raw events quickly enough, the
rate at which virtual time passes will be slowed by
some factor. For example, virtual time may flow
at half real time or one quarter real time. This
approach preserves relative time spans in virtual
time and preserves the appearance of how the
program actually executed.

The second step of the analysis process is to
take snapshots of the system state for real-time
display purposes. Although each event is
registered as it arrives at the interface, it may be
too expensive to perform a detailed analysis of
each event and present the results graphically,
especially if bursty activity overloads the analysis
mechanism or the display mechanism. Instead,
the user can specify a sample interval in seconds
such that a snapshot is taken once each interval.
For example, if the interval is set to one second,
the state of each asset will only be updated each
second, even if it changed state several times
during this period.

4.3 Post-mortem Presentation:
Animation

An Animation View allows the user to animate
the message-passing behavior of a program based
on a captured event file from a previous execution.
This view provides the simultaneous macroscopic
perspective of the program together with a
microscopic perspective of the state of individual
assets and messages.

Once an event file has been created, the
animation view can be used for both performance
debugging and correctness debugging. The
captured events are animated as a sort of time-lapse
movie which shows messages moving between
assets, entering and leaving message queues, and
assets changing state. Figure 3 shows an
animation view of the program CubeSquare.

7

Figure 3. CubeSquare animating.

In the animation view, the user can, in effect,
simulate a particular execution without actually re-
running the program. The post-mortem analysis
of a program in this view can reveal important
performance characteristics and help to detect
various programming errors. By viewing the ani-
mation, the user can dynamically observe the
degree of parallelism, the relative states of
processes, the buildup of messages in message
queues, and the values of logged parameters in the
messages.

The animation view displays the assets of the
program in their fully expanded form, expanding
all replicas, or with assets selectively collapsed to
hide uninteresting detail. Each asset is labeled by
the state that it is in (IDLE, BUSY, BLOCKED
or DEAD) and every replica is uniquely named.

In addition, each asset has two message
queues: an input queue at the left of its top edge
for call messages and a reply queue at the middle
of its right edge for return messages. If the queues
are empty, nothing is displayed. During
animation, messages move along paths on the
screen between assets and enter the message
queues, which are then visibly displayed by a
message icon and a number designating the
number of messages in the queue.

At any time, the user can stop, resume, single
step or restart the animation. When an animation

is stopped, a window with a Message Queue List
(Figure 4) for any of the visible message queues
can be opened by using the menu associated with
the message queue icon. A message selected from
the list in the top pane of the window has its
captured parameters displayed in the bottom pane.
Messages in the list are briefly identified by their
sender and a tag. To illustrate how logged arrays
are displayed, the CubeSquare code was slightly
modified to include an array of ints in the
parameter list for Square. Here, the user had
decided to log y[1], y[2], y[3], and y[5]
(but not y[0] or y[4]) when the asset Square
was called. These Message Queue Lists can be
kept open when animation is resumed. They will
update automatically as messages enter and leave
the queues. The ability to inspect parameter and
return values in these message lists is a valuable
debugging aid.

Replicas of an asset are displayed within a
bordered rectangle which represents a manager
process for the replicas. The manager receives all
the calls to the asset and then looks for an idle
replica to respond to the call. Each of these
replicated asset managers has its own input queue,
but replies from the replicas animate directly back
to the original caller. The name and state of a
manager are not displayed.

8

Figure 4. Message Queue List.

4.4 Real-time Performance Presentation
in Enterprise

Real-time information from the analysis phase is
displayed in Enterprise using interactive graphical
displays that provide different views of the
processor utilization and communication trends, as
gleaned from events gathered during an execution
run. Each graphical display is updated once every
sample interval during real-time processing. Once
execution is complete and the events have been
registered, it is possible to alter sample rates or
play events in reverse order. It is also possible to
use these views for post-mortem analysis.

The Asset Utilization View shown in Figure
5 displays the relative amount of time spent in
each of the three working states from the
execution start to the time indicated in the Current
Time field. Red indicates time spent waiting,
green indicates busy time and yellow indicates
time spent idle. The numerical values beside the

asset represent the number of messages waiting in
the input queue (upper number) and output queue
(lower number) of the asset.

The Message View in Figure 6 shows, for
each asset, the message passing history of the
asset. Each asset is represented by a time-line
with a link being drawn from the asset sending the
message to the asset that receives the message
(similar to other systems, such as [7]).

The Annotation View shown in Figure 7 is a
highly configurable display which allows the user
to select special situations to be identified.
Whenever one of these special situations occurs, a
visual annotation appears on a graphical time-line
display of the execution run. The annotation
pinpoints exactly when the event occurred. This
annotation can be selected from the display to
provide more information. In addition, the user
can specify that all graphical views jump to the
time as indicated by the annotated event to provide
further insights.

9

Figure 5. The Asset Utilization View.

Figure 6. The Message View.

For example, in Figure 7 the Road Runner
icon shows where the program achieved a good
speedup and the Coyote icon shows where a
slowdown occurred. Each of these events can be
annotated with a comment indicating the probable
cause of the event and an indication of where in
the user's code the performance problem occurred.
Thus the user knows exactly where potential

problems lie. The situation choices are obtained
from a menu that includes such utilization
statistics as register on first speed-up, register on
all speed-up and register on first slow-down. It
also includes such aggregate operations as asset
under-utilized, asset over-utilized, overloaded
message queue and excessive message processing
time.

10

Figure 7. The Annotation View.

11

The aggregate operations are based on using
threshold-variance techniques defined over a user
specified group, or family, of assets. After
specifying which assets constitute a family, the
user specifies a variance threshold such that should
any asset vary from the group average by more
than the threshold value the situation is flagged on
the display. This selection process is fully
interactive and may be done at any time. This
form of performance analysis provides an elegant
mechanism for a user to be provided subjective
performance information at a high level in a way
that is quick to recognize.

We introduced audio feedback into our
performance presentation by playing a happy tune
for busy assets, a sad tune for idle and blocked
assets and a somber tune for dead assets.
Unfortunately, the additional overhead slowed
down the presentation too much. However, we are
continuing to look at audio techniques, since they
provide identifiable feedback on a different channel
than the often overloaded visual channel.

5. Conclusions and Future
Directions
Enterprise provides several views of an executing
program (snapshots, animation, auralization,
performance highlights). The combination is a
powerful tool set for quickly identifying
performance problems. These tools are at a high-
level. The user is given direct feedback as to
which assets need attention and the lines of code
where beneficial changes can likely be made. The
tools are also seamlessly integrated into the
environment so that the user does not have to
learn an add-on performance debugging tool.

Another powerful performance enhancement is
being incorporated into Enterprise: automatic
performance tuning. In Enterprise, each process
has all of the code necessary to perform the tasks
of any asset and to execute the code either
sequentially or in parallel. For example, we can
execute a recursive call in a division either
sequentially or in parallel. By gathering data, an
Enterprise asset can decide whether to actually
launch an asset call as a process or to execute it
sequentially if the granularity is small. Such
dynamic performance tuning can be used to correct
user parallelization errors, such as choosing a
granularity that is too small.

Acknowledgments
This research was supported by the Natural
Sciences and Engineering Research Council of
Canada and by a Ph.D. fellowship for Ian Parsons
from the Center for Advanced Studies, IBM
Canada.

About the Authors
David Woloschuk is completing a M.Sc.

program at the University of Alberta. His main
interests are in the analysis and visualization of
distributed parallel programs. He received his
B.Sc. from the University of Alberta. His Internet
address is davidw@cs.ualberta.ca.

Paul Iglinski is a programmer-analyst at
the University of Alberta. He received a B.A.
(Math) from the University of South Florida, an
M.A. (Chinese) from Stanford University, and a
B.Sc. and M.Sc. from the University of Alberta.
The focus of his research was distributed parallel
debugging and object-oriented user interfaces for
parallel computing. His Internet address is
iglinski@cs.ualberta.ca.

Steve MacDonald is in the M.Sc. program
at the University of Alberta. His main interest is
run-time systems for distributed parallel
programming environments. He received a
B.Math. from the University of Waterloo. His
Internet address is stevem@cs.ualberta.ca.

Diego Novillo is in the Ph.D. program at
the University of Alberta. His main interest is
distributed shared memory for parallel
programming environments. He received a B.Sc.
from CAECE University, Buenos Aires,
Argentina. His Internet address is
diego@cs.ualberta.ca

Ian Parsons is in the Ph.D. program at the
University of Alberta. His main interest is in
programming environments for distributed parallel
applications. He received a B.Sc. and M.Sc. from
the University of Alberta, and a B.Sc. (Chemistry)
from the University of Western Ontario. His
Internet address is ian@cs.ualberta.ca.

Jonathan Schaeffer is a Professor of
computing science at the University of Alberta.
His research interests include parallel computing
(programming environments and algorithms) and
artificial intelligence (heuristic search). He
received a Ph.D. and M.Math. from the University

12

of Waterloo and a B.Sc. from the University of
Toronto. His Internet address is
jonathan@cs.ualberta.ca.

Duane Szafron is an Associate Professor of
computing science at the University of Alberta.
His research interests include object-oriented
computing, programming environments and user
interfaces. He received a Ph.D. from the
University of Waterloo and a B.Sc. and M.Sc.
from the University of Regina. His Internet
address is duane@cs.ualberta.ca.

References
[1] A. Beguelin, J. Dongarra, G. Geist, R.

Manchek and V. Sunderam. Graphical
Development Tools for Network-Based
C o n c u r r e n t S u p e r c o m p u t i n g .
Supercomputing '91, pp. 435-444, 1991.

[2] J. Francioni and J. Jackson. Breaking the
Silence: Auralization of Parallel Program
Behavior. Journal of Parallel and Distributed
Computing, vol. 18, pp. 179-194, 1993.

[3] G. Geist and V. Sunderam. Network-Based
Concurrent Computing on the PVM
System. Concurrency: Practice and
Experience, vol. 4, no. 4, pp. 293-311,
1992.

[4] P. Iglinski. An Execution Replay Facility
and Event-based Debugger for the Enterprise
Parallel Programming System. M.Sc. thesis,
Department of Computing Science,
University of Alberta, 1994.

[5] G. Lobe, D. Szafron and J. Schaeffer. The
Enterprise User Interface. T O O L S
(Technology of Object-Oriented Languages
and Systems) 11, R. Ege, M. Singh and B.
Mayer (editors), pp. 215-229, 1993.

[6] J. Schaeffer, D. Szafron, G. Lobe and I.
Parsons. The Enterprise Model for
Developing Distributed Applications. IEEE
Parallel and Distributed Technology, vol. 1,
no. 3, pp. 85-96, 1993.

[7] D. Taylor. A Prototype Debugger for
Hermes. CASCON '92, pp. 29-42, 1992.

[8] D. Woloschuk. Analysis and Display of
Parallel Program Performance Information
within the Enterprise System. M.Sc. thesis,
Department of Computing Science,
University of Alberta, 1995. In preparation.

