CIPS Congress 86, May 1986, pp. 311 - 317.

SOME EFFECTS OF GRAPHICAL USER INTERFACES ON

PROGRAMMING ENVIRONMENTS

Duane Szafron
Brian Wilkerson
University of Alberta
V Introduction
fsz:’s't’; flff{j‘fez?or This paper investigates the effects of graphical
Programming Languages Group user interfaces on Programming environment design.
Department of Computing Science The first programming environments, such as the
University of Alberta Cornell Program Synthesizer [1] and Emily [2] were
Edmonton, Alberta designed for non-graphical environments. Since
T6G 2H1 then, graphical environments like PECAN [3], GUIDE
[4] - [5] and MUPE-2 [6] have been developed. The
graphical user interface can affect many aspects of
the programming environment. These aspects
. include: the display of design information, the syntax
of the programming language, the incremental
compilation process, and the run-time environment.

. . One possible approach to the graphical
Brian Wilkerson representation of programs is to display and edit
grro %Z?e&‘ngmges Group different aspects of the program in different views.
Department of Computing Science This approach has been taken by both PECAN and
Universtiy of Alberta GUIDE. Aspects may include: code, declarations,
Edmonton, Alberta documentation, static program structure, dynamic
T6G 2H]

We investigate the effects of graphical user interfaces on
brogramming environments, Graphical interfaces have an
impact on design, syntax, incremental compilation and
execution. Programming environmenss can now directly
manipulate symbolic program modules. Traditional textua]
sSyntaxes of programming languages can be replaced by
more general graphical syntaxes. Graphical user interfaces
can simplify incremental compilation by holding program

fragments in various States of correctness. The runtime

environment can use q graphical interface 1o select arbitrary

code fragments for execution and to view and modify the
program state. ~ ,

Nous discutons 1 ‘effet des interfaces graphiques sur les

environnements de programmation. Ces interfaces influent
sur la programmation dans les Phases de conception,
Syntaxe, compilation incrémentielle, et correction. Lq
conception peut étre tenue en compte par la manipuldation de
symboles représentant les modules du programme. La
Syntaxe traditionelle devrair étre remplacé par une syntaxe
graphique. La compilation incrémentielle peut étre appuyée
par multiples fenétres contenant chacune une partie du code
en développement. L'environnement de correction peut
utiliser l'interface graphique pour sélectionner morceaux
arbitraires pour exécution et modifier l'état du programme.

calling sequences and runtime behavior. A view may
consist of text or graphics displayed in a window or a
portion of a window. ;

Detailed design information may take the form of
Yourdon style structured design charts, [7] calling
sequence trees and other graphical representations.
Because of the graphical nature of these
representations, they must be viewed and edited with
special purpose editors. This paper will discuss the
paradigms used by such editors.

Standard programming languages have been
defined using a linear syntax. The introduction of
graphics allows for atwo dimensional definition of the
syntax. Automatic formatting of the textual
répresentation of the program clarifies the internal
structure of the program and the legal

transformations. It also enforces consistency between
users. Multfple fonts can be used to emphasize the
structure and provide visual clues to correctness and
completeness. This paper will examine and evaluate
some of the options available for specifying
graphical syntaxes.

There has been considerable discussion in the
literature concerning the method of handling
incomplete and incorrect programs. This is
manifested in the different approaches to incremental
compilation. This paper investigates graphical
interfaces that allow us to design and evaluate new
solutions to these questions.

CIPS 311 congress’86

duane
Text Box
CIPS Congress 86, May 1986, pp. 311 - 317.

The run-time environment may be affected the
most by the use of a graphical interface. The use of
features such as error windows, graphical displays of
data structures and the run-time stack, execution of
arbitrary code segments, and the interactive
assignment of values to unassigned variables are
among the possibilities. This paper looks at some of
the features commonly included in programming
environments, and suggests additional features.

Design

The first programming environments were
concerned only with the coding phase of the software
development process. The only structures that the
user could edit were parse tree nodes and
declarations. Graphical interfaces provide a
convenient method for representing and editing
larger structures like procedures and modules. Many
new programming environments, like MUPE-2 and
GUIDE allow the user to manipulate these larger
structures. Tree structures can be used to display and
edit the static structure of a program, its dynamic
calling sequences or both. For example, figures 1
and 2 respectively show the static and dynamic
structure of a sample program, where each node is a
procedure. Note that the environment must have a
way of representing simple recursion in which a
procedure calls itself and complex recursion in which
two procedures call each other. In figure 2, recursive
calls of both types are represented by dashed lines.

A programming environment must do more than
display these structures if it is to support the design
phase of the software development process. It must
support the integrated editing of these structures. For
example, it must be possible for the user to select
procedure "C" from figure 1, cut it and paste it below
procedure "D". This operation must be automatically
reflected in the internal representation of the
program. On the other hand, consider an attempt to
cut procedure "A" and paste it below procedure "D" in
figure 1. This action should be rejected since figure 2
indicates that program "P" calls procedure "A". The
new arrangement in figure 1 would violate standard
scoping rules.

Figure 1 A static structure tree

CIPS 312

‘implies that there must be a mapping betwes

H
H
i
H
H
H
:
3

3‘--,, ,/ 4 ", " W!f

Mt

Figure 2 A dynamic structure tree

Notice that changes in the static structure of a
program will be reflected in the declaration views of
the procedures and that changes in the dynamic
structure of a program will be reflected in the code
views of the procedures. Ideally, such changes are
really design changes and should be made in the
structure views and reflected in the code and
declaration views. In practice, the user often wants to
make these changes in the code and declaration
views. It is not clear which approach is better.

The key to integrating design into programming
environments is tc carefully map the causal
relationships between the views. The next step in the
evolution process is to introduce specification into the
environment.

Graphical Syntax

The introduction of graphical user interfaces into
programming environments has had little effect on
the syntax of the programming languages which they
support. The major reason for this is probably that
environment designers usually work with existin
languages and feel obliged to make th
environment's view of the language look familiar |
the users. However, even languages like Smallta
which were developed concurrently with
programming environment, have not taken sign
advantage of the graphics in the language's sy
specification. We feel that graphical user interfa
can have a significant impact on programm
language syntax both in new languages and exis
languages.

In the case of a new language designed
integration within a programming environment, tt
is no a pnon limit on innovative syntax.
environment is designed to produce only.
object code, then no complications will
However, if the environment must produce s
code for external compilation, then it is necess
have a textual form of the language source co

"graphical® syntax of the programming lang
code and its textual representation. There m

congress’86

many graphical syntaxes that map to the same textual
representation. Such mappings set limits on the
generality of graphical syntaxes. :

This situation s analogous to the ALGOLGO
Situation in which many representations with different
lexics mapped to the same reference language
syntax [8]. A similarity also exists between the
development of the precise syntax for ALGOL and the
development of graphical syntaxes. The precise
definition of ALGOL syntax was due to the
development of BNF. Graphical syntaxes probably
will not receive widespread acceptance - until we
have a standard form for specifying them. B

In the case of existing languages, envifonment
designers are only limited by the restriction that the
graphical syntax must map to the textual syntax of the
language definition. We shall explore some of the
freedom for representation of language syntax
provided by graphical user interfaces.

' Structures and Keywords

Programming environments which have graphical
interfaces can replace some text by graphical objects.
It is not clear how much of this text the environment
should replace. There are control and data structures
which exist solely to structure other information.
These structures are candidates for replacement by
graphical objects. However, it may be advantageous
to retain some text for clarity even in those cases
where it could be eliminated. For example, it might be
Clearer if an IF statement, which could be represented
as a purely graphical object, was labeled with text. In
- general, programming environments can represent
structures as purely textual entities, purely graphical
entities, or some combination of these. Figure 3
displays three sample possibilities. The graphical
representations are based on Nassi-Schneiderman
charts [9] and the language GAL [10].

o

Modula-2:
Type HashMap =
ARRAY‘HashMapRange OF NodePtr

GUIDE: ‘

Type HashMap IS ARRAY OF NodePtr INDEXED
BY H‘ashmapRange

Figure 4 Choose keywords for clarity not brevity

Since software engineers think in English, the text
is a useful aid to comprehension. This bias might be
the result of training and might not exist for g
programmer who is trained to use a purely graphicaj
syntax. Perhaps programming environments should
use keywords only in the transition period until purely
graphical objects are familiar to programmers. This i
an interesting area for study in human factors,

A programming environment may use an
extended set of keywords which does not match the
textual syntax of g programming language. Language
designers often abbreviate keywords, like "ELSIF" in
Modula-2, to minimize typing. Since keywords are
automatically generated by g programming
environment, there is no reason to abbreviate them.
The emphasis should be on clarity, not brevity. For
example, compare the clarity of the two array
declarations in figure 4. The first is from Modula-2
while the second is from the GUIDE programming
environment.

The number of keywords in a language has
traditionally been kept small to minimize the number
of reserved words. Keywords need not be reserved
words in programming environments since they can
be recognized from context as they are generated.
However, using a keyword as an identifier will result
in an error if the source code is compiled externally.
The solution to this problem is a modification of the

identifier during the translation from graphical to
textual syntax.

WHILE not done DO WHILE not done not done
read(aChar) [read(aChar) | [read(aChar) |
IF valid(aChar) THEN [IF valid(aChar) valid(aChar)
done = TRQE Lgone = TRUE Uone = TRUE
ELSE ELSE | showPrompt
showPrompt ,;showPrompt
END) ‘
END

Figure 3 Structure representation using graphics and text

CIPS 313

congress’S6

The use of keywords for identifiers can still fead to
user confusion. The graphical interface can remove
this confusion in a simple way. Keywords can be
highlighted by the use of a different font, emphasis or
color. This has the additional advantage that it
emphasizes the structure of the program. The same
technique can be used on those keywords which
represent template place-holders. For example, in
GUIDE, a hollow font is used for these place-holders
as illustrated in figure 5.

FOR controlExpression DO
IF condition THEN
read(aChar)
END IF
END FOR

Figure 5 Alternate fonts and styles

Environment designers should be aware that
there is the possibility of "too much of a good thing".
Care should be taken to avoid the use of fonts which
are difficult to differentiate; strange fonts, which can
be difficult to read; and the use of too many different
font types.

Format

Although BNF can be used to specify the syntax
of a programming language in a textual way, it is not
used to specify the textual format of the language.
Most modern programming languages are free format
and tokens are separated by white space (one or
more Dblanks, tab characters or end of line
characters). This was a response to the situations
encountered in FORTRAN and COBOL where
indentation requirements and continuation marks
were a hindrance to the programmer.

The current practice results in a variety of
indentation formats which lack consistency between
users and often are not self-consistent within a single
program. Line-breaks also have no meaning and
artificial structure separating or line ending tokens
(like ";" in Pascal, Modula and Ada and "." in
Smalitalk) are used. Language designers have
abandoned two very valuable representation
characteristics as a tools in syntactic specification.
Indentation and line-breaks should be re-examined
as vehicles for conveying syntactic information in the
context of programming environments.

A fixed indentation scheme can be made .

automatic so that it is not a hindrance. A specific
syntactic meaning can then be ascribed to
indentation, so that fixed indentation can convey
internal structural information. For example, the
classic dangling ELSE problem [11] disappears.

CIPS 314 congress’86

In addition, fixed indentation also clarifies user
options. For example, in GUIDE, information is
changed by selecting structures. When the mouse
button is pressed while the cursor is on a character,
the smallest structure containing that character is
selected. A fixed indentation scheme can make it
obvious to the user which structure will be selected.

A line break can also be used to convey syntactic
information. Since graphical user interfaces allow
scrolling both vertically and horizontally there is no
need to proceed to a new line in the middle of a
programming structure. A line-break can be used as
a natural end of structure (or structure separating)
marker. This removes the need for structure ending or
separating tokens in the case of a simple sequence
of structures.

There are other situations where formatting can
convey syntactic information in a very natural
manner. The representation of expressions in GUIDE
is a good example. Although the user may enter an
expression without parentheses, according to the
standard precedence rules between operators, the
display of expressions is fully parenthesized to
convey the internal structure and syntactic meaning
of the expression. Figure 6 illustrates this feature.

answer =a*(+c*d)+e”f {as entered}

answer '=(a* (b +(c*d) +(e *1) {as displayed}

Figure 6 Fully parenthesized expressions for clarity

incremental Compilation

Incremental analysis or compilation is used in
several programming environments: Cornell Program
Synthesizer, POE, GUIDE, etc. For this discussion, it
doesn't matter whether the environment is intended
to produce machine code or some other intermediate
representation. The major question that must be
answered in such environments is what to do in tf
case of syntactic or semantic errors. Should tt
incorrect information be accepted and the error
flagged or should the environment refuse to accept
it? If the environment refuses to accept the
information, then the user must take corrective
measures and re-enter the information. This is @
burden which the user should not have to bear. Fo
example, if an assignment statement is entered a
the variable on the left hand side is undeclared,

not have to re-type the assignment statement &
declaring the variable. it is for this reason that 1
Cornell Program Synthesizer and POE allow sO
errors in the program.)

On the other hand, if the information is accepted
into the program, then the environment must cope
with an accepted program which is incorrect. Such a
program is more difficult to represent and execute.
Graphical user interfaces provide a good solution to
this dilemma. The user is required to enter
information in special dialog windows. As correct
information is accepted, it is transferred to other
windows which contain a representation of a correct
program. Incorrect information simply waits in an
entry window until other changes result in it
becoming correct. For example, in GUIDE, a user
enters an assignment statement in an assignment
dialog box as displayed in figure 7. When the
statement has been typed, the user "pushes” the
accept button.

openStream / Code / Assignment

variable LaStream

expression | nullStream

=)

Figure 7 An assignment statement dialog in GUIDE

If a syntax error occurs, then the incorrect portion
of the entry is highlighted so the error can be fixed. If
a semantic error occurs then the user is informed as
illustrated in figure 8. After the user presses the "OK"
button to signal acknowledgement of the error, the
assignment statement remains in the dialog box. The
user can enter a declaration for the variable and then
return to the dialog box and "push” the accept button.
When the assignment statement is correct, it is
accepted into the code and displayed in a code view
in another window.

The identifier "nullStream”
has not been declared.

Figure 8 Notification of a semantic error in GUIDE

There is a more difficult hurdle to face in only
accepting syntactically and semantically correct

CIPS 315

programs. There are several situations in which the
user wants to allow a correct program to become
incorrect for a short period of time. For example,
consider the following situation. A user has declared
a variables to be an INTEGER and has several
references to this variable in the program. The user

; decides to change the variable to a REAL. If the

" declaration is changed so that the variable is a REAL,
-some of the structures which reference the variable
will become semantically incorrect. If the program
must remain correct, it appears that the structures
containing these references will have to be deleted
before the declaration can be changed.

A graphical user interface can supply a solution to
this problem. When a declaration is changed, all
structures containing this declaration are excised
from the program. They are not thrown away
however. Instead, they appear in dialog boxes just as
they would if they were being entered. The structures
can then be edited or other actions can be taken so
that they become correct again and can then be
accepted back into the code.

Since a large number of excisions may take
place, the user may not know where the contents of a
particular dialog box will be inserted if it is accepted.
Some context mechanism is necessary to inform the
user of the associated location. For example in
GUIDE, each dialog box contains a context button as
shown in figure 7. When the user presses the context
button, a window for the appropriate view is
displayed and an insertion bar shows where the
structure will be inserted if the accept button is
pressed.

Runtime

Graphical interfaces can have a significant impact
on the runtime features that a programming
environment provides. The major use of a run-time
capability in a programming environment ‘is
debugging. Traditional debugging features include:
setting breakpoints, dumps - and single step
execution. These features can be improved and
extended with a graphical interface.

Debugging consists of three major activities:
selecting code to be executed, viewing the program
state and modifying the program state. Many of the
features which can be introduced with a graphical
interface can also be done without graphics, by using
a text based debugger, but the graphics make them
much more appealing. There are many text based
language debuggers which are never used because
of the difficulties in: learning how to use them,
selecting execution start and end points, modifying
the program state and displaying useful information.

Selection
In most compiled programming languages, the

Smallest unit which can be executed is a program.
This is true in spite of the fact that many languages

congress’S6

allow separate compilation of smaller components
such as functions, procedures or modules. On the
other hand, in interpreted languages, the smallest
unit of execution is much smaller. It is an expression
in Lisp and Smalltalk, and a clause in Prolog.
However, even in the case of interpreted languages it
is difficult for the user to select a set of expressions
and have them executed if a non-graphical interface
is used. The problem is simply one-of selection. With
a mouse and bit-mapped display a programming
environment can allow arbitrary structures to be
selected for execution. For example, a block of three
statements inside of an IF structure could be selected
and executed or the condition of a WHILE statment
could be executed. In addition, this random access to
structures makes the setting of breakpoints and
temporary suspension of execution a trivial exercise.

For example, figure 9 shows a typical graphical
debugging window in which the text to be executed
has been highlighted. The user has inserted a pause
sign between the IF and WHILE statements. When a
pause sign is encountered during execution, the
execution is suspended so that the user may
examine the program state. The user may then
resume execution at any time.

WHILE:y < 2 DO
y =y +1
doSomething(y)
END WHILE

Figure 9 A graphical debugging window

Program State Display

Selective execution is useless without a means of
detecting the results of the execution. A graphical
interface can provide multiple windows, each
displaying a different aspect of the executing code as
in PECAN. In general, an environment could provide
separate windows for: selecting the code to be
executed, displaying the values of symbols,

CIPS. . 316

»

displaying the run-time stack, displaying the dynamic
structure tree, and reporting run-time errors.

The values of symbols may be displayed in many
ways. One approach is to use the declaration view, to
select variables, parameters and constants so that
their values may be inspected. Figure 10 contains

such a declaration view.

Figure 10 A declaration view with a variable selected

Program State Modification

It is very inconvenient for the user to have to
supply complete state information prior to the
execution of a code segment. Since it is not until
runtime that the required set of state information can
be determined, this is when it should be supplied.
This eliminates the need for specifying extraneous
information. Two examples of state information are
the values of uninitialized variables and the values to
be provided during input operations. A graphical
interface provides a simple mechanism for this
information to be supplied as it is needed. Each time
an uninitialized variable or input operation is
encountered, the user is asked for the value. This can
be done through a dialog window which pops up
accepts a value and disappears. v

For example, if the highlighted code of figure 9 i
executed, the dialog box of figure 11 is generated
the user enters a value of "2" for "x", then the EL
clause of the IF statement will be executed and t
user will not have to specify an input value for t
read statement.

Please enter a value for the variable x.

Figure 11 A dialog box for an uninitialized vari

congress’86

A dialogue window can also be used to change
the value of a variable during pauses in execution.
For example, at the, pause displayed in figure 9, the
user may elect to change the value of "y" before
continuing with the execution. The symbol "y is
chosen and the value is changed in a dialog box.

Conclusion

Graphical user interfaces can have a profound
effect on both programming environments and the
programming languages which they support. The
traditional textual syntax of a programming language
should be replaced by a more general graphical
Syntax which takes advantage of the graphical
interfaces. Alternate syntaxes should be developed
for existing languages and new languages should be
designed with graphical interfaces in mind.

Detailed design can now be incorporated into
programming environments through manipulation of
symbols which represent program modules. Both
dynamic and static program structure can be
manipulated at a high level,

Graphical user interfaces simplify the problems of
incremental compilation by allowing multiple
windows which can hold program fragments in
various states of correctness. It is now possible to
construct a usable environment in which only code
which is both syntactically and semantically correct is
allowed in the program at any time. Any incorrect text
which must be manipulated can be viewed in
alternate windows.

The runtime debugging environment is the
beneficiary of most of the graphical interface work to
date. Graphical interfaces provide a good mechanism
for selecting arbitrary code fragments for execution.
They also provide the means to selectively view and
modify many aspects of the program state.

The graphical features described in this paper are
appealing and environment designers are in the
process of incorporating them. In many ways, this is
reminiscent of the situation in programming
languages a few years ago. At this point we would
like to insert a word of caution. Designers should
remember two words as they charge ahead: "feature
interaction". For example, the many programming
language features introduced by Ada are very
appealing to programmers. However, there is a cost
associated with them. Features such as default
parameter values and iabelled parameters interact in
subtle ways. [11]. We are Currently studying feature
interaction in programming environments as we are
implementing the GUIDE programming environment.

References

[11 Tim Teitelbaum and Thomas Reps, "The Cornell
Program Synthesizer: A Syntax-Directed
Programming Environment", CACM (September
1981), pp 563-573.

(2]

81

[4]

(5]

(6]

[7]

(8]

o

[10]

[11]

[12]

W. Hansen, "User engineering principles for

interactive systems", Faj| oint_Computer

Conference (1971). .

Steven P. Reiss, "Graphical Program

Development with PECAN Program

Development Systems", Pr in f th

ACM SIGSOFT/SIGPLAN Software
ineeri i

Engineering Symposium on Practical Software
Deveiopment Environments, SIGPLAN Notices,
(May 1984), pp 30-41.

Duane Szafron, John Adria and Brian
Wilkerson, "GUIDE: An Environment for
Software Design," INFOR (January 1985), pp
31-52.

Duane Szafron and Brian Wilkerson, GUIDE;
Preliminary Users' Manual Programming
Languages Group, Department of Computing
Science, University of Alberta, forthcomming.

Nazim H. Madhaviji, Luc Pisonneault, Surajit
Choudhury and Nathan Friedman, "The
MUPE-2 Programming Environment Project: An
Overview", Proceedings of the CIPS ACI

Congress '85, pp 372-382,

Edward Yourdon and Larry Constantine,
r ign, Prentice-Hall, (1979).

Peter Naur, "Revised Report on the Algorithmic
Language ALGOL 60", CACM, (January 1963),
pp 1-17.

I. Nassi and B. Schneiderman, "Flowchart
Technique for Structured Programming,
IGPLAN Notice » (August 1973), pp 12-17.

M. B. Albizuri-Remero, "A Graphical Abstract
Programming Language", SIGPLAN Noti S

~ (January 1984), pp 14-23.

Bruce J. MacLennan, Principles of
in : i luation

nd__Implementati n, Holt, Reinhart and

Winston, (1983).

C.N.Fisher, Anil Pal, Daniel L. Stock, Gregory F.
Johnson and Jon Mauney, "The POE
Language-Based Editor Project", i

f the ACM SI FT/SIGPLAN_Softwar

Enginegring Symposium on Practical Software
Development Environments. SIGPLAN Notices

(May 1984), pp 21-29.

CIPS 317 congress’86

