ICIPS/ACI Congress 84, May 1984, pp. 105-112. |

GENERAL USER INTERACTIVE DESIGN ENVIRONMENT: AN OVERVIEW

Duane Szi¢fron, John Adria, Brian Wilkerson

Programming Languages Group, Dspartment of Computing Science
University of Alberta

Edmonton,

Abstract

This paper presents an overview of the General User
Interactive Design Environment (GUIDE). It includes a
discussion of the general principles of the system, a
simulated example, and an extract from the formal
specifications of a task model for the system.

Cet article présente de facon sommaire un systeme gén-
éral pour la conception de programmes nommé "General
User Interactive Design Environment'" (GUIDE). Il com-
porte une discussion des principes directeurs du sys-—
teme, un exemple simulé, et un extrait des spécifica-
tions formelles des taches du systéme.

et INTRODUCTION

Consider a software design environment which allows the
user to enter the conceptual specifications for a com—
plex piece of software and produces a valid program
that meets these specifications, along with detailed
performance evaluations fog? -the program. No design
environment exists today which can meet this challenge.

The approaches Lo this problem and ils component oparts
are quite diverse and span the breadth of compuling
science. The problem can be broken down many ways.

One view of the breakdown consists of:

1) Transformation of conceptual specifications to
formal specifications,

2) Detailed modular design.

3) Coding of modules.

4) Debugging of modules.

5) Testing and performance evaluation.

Although this list of steps appears to be sequential,
it does in fact, involve considerable backtracking. In
addition, program verification must be done con-
currently instead of being left to the end of the pro-
cess where it would be too complex.

Although no complete environment exists for the entire
design process, there are many software tools which aid
in various phases of the development cycie. Certainly,
the coding and debugging phases have seen the largest
growth in the availability of computer tools. There
are - many good programming environmenls which have been
designed and implemented in the last five years. These
environments include: the Cornell Program Synthestizer
(CPS) {11, the "z" editor{2], the SD5 editor(3],
CaPS[4), and Emily[5]. They generally provide an edi-
tor for program code entry, with complete entry-time
syntax checking, and various degrees of entry-time
semantic checking, as well as run-time debugging sup-
port,

It is quite natural to expect that these programming
environments should be extended to design environments
which incorporate all of the phases of the design pro-
cess. It is also natural that the design environments

Alberta,

CANADA, T6G 2H1

should evolve in an incremental fashion, first incor-
porating the detailed design phase and then attacking
the specification phases.

A good detailed design environment should encourage tre
user to foliow good design practices. It shuuid elim-
inate bolh syntactic and semant:c errors at code
enlry-time, by either automatically correcting Llhe
errors, or by delinealing them for the immediare a‘ten-
tion of the user. It should support run-time debugging
and program testing. Above ail, it should recognize
and support the non-sequential nature of the design
phases by allowing the modular design to change as cod-
ing and debugging uncover logic errors.

This paper describes a task model for a pratolype
design environment which incorporates phases 2, 3 and 4
3s described above, It provides syntax and semantic
checks at code entry time using an algorithmic Yanguage
for the code. Code is stored internaily in parse trees
and can be interpreted for run-time debugging. When a
complete program has been designed, coded and debuggad,
the environment will generate Pascal cade which car be
compiled externally Ffor production prirgoses. Since
this is only a protetype system, oniy a resiricted ‘set
of data and control struclures are used. The main goal
of this prototype system is to study the interaction of
the design, coding and dehugging phases. of the develcp~
ment process.

ke

THE ENVIRONMENT

Detailed software design consists of the translation of
human software specifications for the sclution of a
single large complex problem, tc human software specif-

ications for the solulion of a multitude of smatier
simpler problems. In this paper, the object wused 1'o
represent a single problem, wiil be called a medule., A

wodule which represents a small simsie p:rob eam wnich
requires no more subdivision will be ¢al'ec 1 fuagamen-

tal module. Detailed design zan then he aesccioed as

Lhe process of dividing compiex muoduies info groups of

4

simpler modules. this nprocess, md 3
refinement. Coding can be described as "he the p?ﬁcess
of transforming the contents of a moduie From the human
gpecification of a problem to a represeniation cof the

We shali cail

problem suitable for machine sclution. We shall call
this process, module transfourmalion.

During the scftware development process, deta:led
design 15 typically represented as a process which

occurs before coding. That is, complefe module refine
ment is supposed Lo be carried out before any moduie
transformation. Coding generally EXpeses
design f£laws which result in changes [o the design. It
is for this reason that delaiied design and
should be performed in a common environment.

however,

coding

In such an environnent the user begins by entering :{re
name of the rrogran. The environment responds by
creating a moduie whose only attribule is the module
name. The user then refines the modulie by entering the
names of submodules. The responds by

environment
creating more wmodules whose attributes are the moduie

&1PS SESSION 84 105

duane
Text Box
CIPS/ACI Congress 84, May 1984, pp. 105-112.

names and information which represents the hierarchy of
the modular structure. The user proceeds in this way
until all modules are fundamental.

At this point, the user begins module transformation,
by entering both data flow information and code. The
environment has two basic responsibilities during
module transformation. One responsibility is to ensure
that the module interfaces remain consistent. A change
in the data flow requirements for one module must
result in changes for the data flow requirements in all
modules which invoke it. The second responsibility of
the environment is to ensure that the user is notified
about syntactic and semantic errors as code is entered,
Recall however, that the most important feature of the

design environment is that any time a design error is
uncovered, the user can modify the design by module
refinement operations. The transition from module

refinement operations to module transformation opera-
tions and back again should require a minimum of effort
from the user. For example, consider the case where a
user is entering code and discovers that a new sub-
module is required. The environmenl wmust provide a
simple command s0 that the user can generate the new
module and make any module transformations to it that
are deemed nedéssary, including data flow and code
entry. Following this action, the environment must
return the user to the point at which this diversion
occurred without requiring the user to find the loca-
tion of the old module in the module hierarchy.

To accomplish these objectives, we propose a task model
in which four distinct 3éts of tasks are available,
Three of these sets of tasks correspond to user views
of the environment: the Hierarchy View, the Declaration
View and the Code View. The hierarchy view is distinc~
tive in that there is only one view which consists of
all modules, while there are separate code and declara-
tion views for each module. The fourth set of tasks,
called global tasks, are for changing views and
interacting with the world outside of the environment.
They can be performed from any view,

There is a consistency in the user's conceptual model
of GUIDE which exists throughout the views. In each
view, Lhe user wanipulates ordered trees of structures.
In the code view, these structures are statements and
components of statements, whereas in the declaration

view, the components are declarations and components of
declarations.

Four guiding principals were used in designing these
views. All information known by the environment must
be available to the user. Information is classified by
view and each piece of information can be changed in
only one view. All views represent information as
structures, not text. Changing views must be simple
and fast.

The Hierarchy View

This view encompasses the hierarchical structure of the
software being designed. It is represenfted by an
ordered tree in which the nodes are named boxes
representing program modules. A program module may, of
course, appear in several places in the hierarchy. A
formal specification for the tasks in this view are
described in appendix A. . A grammar for the formal task
definition “language which is used, and a discussion of
its features appears in [6]. Essentially, the user is
allowed Lo move a ‘cursor from node to node in the
hierarchy and to insert, delete and move subtrees. The
following figure is a sample screen from the hierarchi-
cal view of a simulation of the GUIDE prototype.

Flgure 1: An example of the hierarchy viow.

The Declaration View

The user can disptay the declaration view of any«
module, and edit the declarations for all :centifiers
appearing in that module. These declararions are
displayed in a format so that the user can use a con-
ceptual model of an ordered tree to edit the informa-
tion. This is accomplished by moving a cursor to the
various components of a declaration and replacing [hne
information in the chosen component. New daclara. ‘ons
are created by commands which generale declaration lem~
plates. The forma! task model for this view appears in
[6], and is similar to the task model for the nhicrurch
ical view which appears in appendix A.. It 1is important
to note that the information is displayed in a form
which is independent of the target language (Pascal in
this prototype). The following two figures are sample
screens from declaration views of a simulation of the
GUIDE prototype.

sortList MODULE TYPE: program 4 Gd ae
LOCALS
CUNST maxl IstSlze
100
{ maximun numer of elements in L!sr }
TYPE ListIngex
RANGE FROM 1
13 maxi istsize
TYPE list
ARRAY OF (nteger
IN List{ndex
VAR alList
List
| the list of Integers ro be sorted |}
Flgure 2: The declaration view for module sorttist
DU exort MOOULE 1YPE. procedure KEVE L
DATA FLOW

PAkAA alist

List
{ the Ifst of elements to be sortsd |

nsout
LOCALS
CONST
Typt
VAR templ | StE lement
“type name>
<comment >
EXTERNALS :
TYPE List
SOrtList

Figure 3: The declarat ion view for mooule tudd)eSort

&1PS SESSION 84 106

.,

Notice that in the above figure, templates for <type
name> and <comment> of the variable t:mpListElement
have not yet been inserted by the user. The external
type "List", and the name of the .xte-nal module in
which it is declared, were not inserte¢d by the user.
They were inserted by GUIDE in response to the users
declaration of alist as a parameter of this type. When
an undeclared identifier is inserted by the user,
either in the declaration view or the code view, GUIDE
searches the hierarchy to find the module with maximum
depth in the ordered tree, which is an ancestor of all
occurrences of the current module, and which has a
declaration of the identifier under consideration. For
such an identifier, GUIDE inserts a line in the exter—
nals section of the declaration view consisting of the
identifier's name and categury (constant, type, vari-
able or module) together wit! the name of the module in
which it is declared. If no such module is found then
the special module name "UNDEFINED" is wused. If the
user wmakes a local declaration of an identifier which
is in the externals list, then GUIDE removes it from
the externals list,

The Code View

As in the declaration view, the user edits structures
by moving a cursor to a node in this ordered tree and
by replacingmthe information in the selected node. The
nodes in this view consist of statements and components
of statements. New statments are created by commands
which generate statment templates. The code is
displayed in an algorithmic notation which reflects the
parse tlree it represents. A grammer for this notation
appears in appendix B and. A, formal task model for this
view appears in [6). Thé followxng figure is a sample

screen from the code view of a simulation of the GUIDE
prototype.

begin { bubbleSort }
SRChaNQes <- true;
while

(eumuxps)
exchuues <~ false;
b <=1

uhllo
(1 < maxtistSize)
do

if

<conaltion>
then

<statement >
endlf

Figure 4: The code view for module bubbleSort .

At this point, the user has created a template for an
if-then statement, but has not yel replaced the <condi-
tion> or <statment> components. Al some level, com-
ponent structure must be abandoned in favor of a string
of text. If this is not done then the entry of of a
simple addition expression as <identifier> + <identif-
ier> becomes tedious for the user. The choice of level
at which structure is abandoned is crucial Lo a system
which guides, but does not hinder the user. Through

simulations of GUIDE, we have determined a collection
of syntactic structures which are "primitive" in that
they should be entered as text. The primitives
include: conditions in while, if-then and if-then-else
statements as well as complete assignment statements
and module invocations. Although the primitives are
entered as text, they are not stored this way. The
primitives are parsed as they are entered and displayed

on the screen in a "standard" format. The format
includes the full parenthesization of expressions.
This feature allows the user to immediately ascertain

GUIDE's interpretation of all

which are

&IPS SESSION 84 107

primitives

A primitive is edited in a one line window at

snieraed,

the bottom of the screen so that the context of the
primitive will remain visible.

The Global Tasks

These tasks are the ones which Sllow the user to
interact with the operating system. The wuser may

change from any view (the hierarchy view or the code or
declaration view of any module) to any other view, save
the environment or restore it, define command
and execute an operating system command.

macros

DEMONSTRATION

We now present a brief demonstration of a simulation of
the GUIDE system, The user has used the hierarchy view
to create the four modules in figure 1. When the
declaration view of the module bubbleSort is entered,
the screen will appear as in figure 5.

The cursor, at the "P" in "PARAM", is positioned at
start of the parameter declaralion section.
when the user requests a template,
parameter declaration template.
in figure 6.

“the
Therefore,
GUIDE provides a
The screen appears as

The user can expand the

identifier component of 1thLe
parameter template by performing the following opera-
tions. A single command moves the cur or to the right
50 thal it rests on the "<'" of "<identifier>". A

second command requests replacement of rhe component by
primitive text. The user enters Lhe text and tne sys
tem checks for semantic errors. The new screen (s
displayed in figure 7.

In a similar fashion, the user moves down to each of
the other components and replaces them by primitive
text. 1In each case, GUIDE checks for semant:c errors,

MODULE TYRE: praxedure

DATA FLow
PARAM

LOCALS
CONST
TYPE
VAR !

Figure 5: The Initial template for rhe Jeciarat 1on view.

SO0 edort

DATA FLOW
PARAM - ider . (F fer>
e name s
K¢« wment ,
Cdaxde .

LOCAI S
CONST
FYPE
VAR

MODULE Qvet

OrOC duie 3123 a8

Flgure &8: A paremster dec)arat ion tompiate.

SV S

S

e e

P —

Tz
|
1
I
|
T
f
j

ouch | eSort

DATA FLOW
PARAM at st
Ttype name>
<comment >
, <mxje>

LOCALS
CONST

VAR

bl eSort

DATA FLOW
PARAM Al lst

List
{ the 1ist of elements to be sorted)
in/saut

LOCALS
CONST
TYPE
VAR

EXTERNALS : ™™
TYPE List
sorti ist

———— dy e -

Figure B: A complete parameter declaration,

b ! eSort MOQULE TYPE: procedure 3-03-84

DATA FLOW
PARAM al. Ist
List
{ the list of elements to be sorted }
In/aut

LOCALS
CONST
TYPE
VAR cidentif ler>
- <type name>
<comment >

EXTERNALS :

TYPE List
sortlist

Figure 3: A varijable declarat ion parametér.
budt) eSort MODULE TYFE: procedure J-u3-84

DATA FLOW
PARAM 3l ist

List
{ the list of elements to be sorted }
In/out

LOCALS
CONST
TYPE

VAR exchanges
boolean

VAR TemplListE]ement
Integer

EXTERNALS :
TYPE List
sortl!st

Figure 10: Completed deciaration view of moiule bubbleSort.

before accepting the text. The resulting screen is
shown in figure 8. As was mentioned earlier in the
previous section of this paper, the external reference
to the type "List" was generaled by GUIDE.

In order to declare a local variable, the user gives
the following sequence of commands. A single command
moves the cursor left to the "P" of "PARANM". Three
consecutive commands move the cursor down, first to the
"C" of "CONST", then to the "T" of "TYPE" and finally
to the "V" of "VAR", Since the user is now at the
variable declaratjon section, a request for a template
results in the generation of a variable declaration
template. The result is shown in figure 9.

After several more editing commands, the declaration
view of this module is in its final form. It appears
in figure 10.

vegin { bubbleSort |}
< Statement >
end? { tubpleSort)

begin { buobleSort
excnanges <~ rrue
end; { bubbleSort)

Figure 12: Insertion Of an asasignment Statement.

On enlering the code view of module bubbleSort, the
user 1is presented with the screen of figure ll. The
cyrsor 1s positioned at the "< of "<statement>". The
ttser 1ssues a command to replace the stalement template
by an assignment statement. Since an assignmenl stale-
ment is primitive, 1t is entered as Cext. The

assignment stalement is parsed and if it is legat, it
is8 saved in the parse tree for the module. Otherwise
the user is immediately notified of the error se¢ that
it can be edited. The wuser must correct the error
before the primitive is placed in the parse tree. The
resulting screen appears in figure 12.

A single command is then used to create a statment tem-
plate after the current statement. The cursor is posi-
tioned at the "<" of the new '<stafemenl>", The new
screen is shown in figure 13. Notice that GUIDE has
inserted a semicolon between stalements.

In order to enter a while statement, the user issues a
command to change the "general" statement template to a
while statement template. The result appears in figure

14, GUIDE enters a while statment into the parse trase
for this module. h

&IPS SESSION 84 s

bagin | DubbieSort)
exchanges <- true;
{statement>

ond7 | Duoo!eSort |}

begin { buobleSort }
exchanges <- true;
wnile
<cond it iom>
do

(statement>
endwhile
ond; | uboleSort)

Figure 14;: Insertion of & whlle statement template.

To move the cursor to the "<condition>" component of
the while statement, the user issues a move right com~
mand. The uger then gives a command to replace the
"<condition>" by primitive text. The screen is updated
as shown in figure 15. Because of the fact that GUIDE
stores all primitive text in parsed formal, all expres-
sions are displayed in fully parenthesized form. This
is true regardless of whether or not the user enters
the parentheses.

begin { buobleSort }
exchanges <- true;

«statement>
enawhile
ond; { buboleSort)

Floure 15: GUIDE displays fully parenthesized expressions.

In order to expand the body of the while statement tem-
plate, the user first moves the cursor down to the "d"
in "do" and then right to the "<" in '<gtatement>".
Since three statments are to be entered in the body of
the while, the user issues the insert statement above
command twice. The screen now appears as in figure 16.
The cursor remains on the first "<statement>".

After replacing the first component by primitive text,
moving the cursor down, replacing the second component
by primitive text, and moving the cursor down again,
the screen in figure 17 is displayed.

begin { bbleSort |}
exchanges < (rue;
while
{ oxchanges !
&

(starements;
{statement +;
<starement)
endwhile
end; | obuppleSort }

bagin { ubbleSurt }
exchanges <- [rue;
while
texchanges)
ao
exchanges <- false;
-)
<sratement>
endwhile
end; | buptleScrt

Figure 17: Replscing statement templates Dy assignaent statements.

The user once again uses a single command to replace
the current statement by a while statement templale and
figure 18 is the result.

while
1 exchanges)
dgo
exchanpes <- faise;
R
ile
ol wcondit fon>
ao
<statement>
erxiwh | le
endwhile

end; { bubbleSort }

begin { bunoiesort
exchanges <- true;
whtile
cexchanges !
ao
exchanges «- ftalse;
[
while
L1 < maxifstSize
ao

iF
<condition
theen

wsratement
endlif
endwhiile
endwhile
ena; { bubbleSort }

Figure 19: Insertion of an If-then template.

&IPS SESSION 84 109

o e

PN SRS

S U U YU S

P D .

S P

I U DS S S

g,
The user moves the cursor to the right, replaces the
"<condition>" by text, moves down to the "<statement>",
and replaces it by an if-then statement template. The
result of these actions is displayed in figure 19.

After further editing, the final code view of this
module appears as in figure 20.

begin { bucbleSort |}
nChanges

.. (- true;
anille
texchanges)
7xchanqes <~ fmlse;
<~ 1
while
(! < maxL/stSlze)
do
(atistlt) > aListit + 1))
then
templ I18tElement <- alistii};
aList{1) <~ aListif + 14;
aListl) + 1] <- templistFlement;
Ifeuwamzs<-tn2
l(~? + !
enawhiTe
endwhile

end; | bubbleSort }

Figure 30: Completed code view of module bubbleSort.

References

et

[i] T. Teitelbaum and T. Reps, "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment", Commun. ACM 24, (9, 1981), pp. S563-573

{2] 8. R. 2. Wood, "The 95% Program Editor", Sigplan
16, (6,1981), pp. 1-7 .

[3] C. W. Fraser, "Syntax Directed Editing of General

' Data Structures", Sigplan 16, (6, 1981), pp. 17-21

{4 T. R. Wilcox, A. M., Davis, and M. H. Tindall, "The
Design and Implementation of a Table Driven,
Interactive Diagnostic Programming System', Commun. ACM
19, (11, 1976); pp. 609-616

{51 W. J. Hansen, "User Engineering Principles for
Interactive Systems", Fall Joint Computer Conference
39, (1971), pp. 523-532

{6] D. Szafron, J. Adria, B. Chadramouli and B.
Wilkerson, "A Formal Task Specification Language', to
appear

APPENDIX A

The following is an extract from the formal specifica-
tions of the task model for the GUIDE system. All of
the tasks from the hierarchy view are included. An
explanation of the formal specification language
appears in [6].

class Module;
name : String; °
end;

class ModuleOTree;

OTree ()
info : Module;
end;

class ModuleOTreeDictionary;
Dictionary (ModuleOTree);
end;

class Hierarchy;

root : ModuleOTree;

cursor : ModuleQOTree;

saveDictionary : ModuleOTreeDictionary;
end;

task movePred
(aHierarchy : Hierarchy);

{ This task moves the cursor to the ModuleOTree which
is the predecessor of the current ModuleUTree. }

pre @ .
aierarchy.cursor.pred <> nil;
delta :

alHierarchy,cursor <-— aHierarchy.cursor.pred;
end;

task moveSuce
(aierarchy : Hierarchy);

{ This task moves the cursor to the Modul eOTrme which
is the successor ofs the current ModuleOTree. }

pre :
aHierarchy.cursor.succ <> nil;
delta :
aHierarchy.cursor <-- aHierarchy.cursor.succ:
end; ’ “

task moveFirstChild
(aHierarchy : Hierarchy);

{ This task moves the cursor to the ModuleOTree which

is the first child of the current ModuleGTree. |}

pre :
aHierarchy.cursor.firstChild <> nil;
deita :

aHierarchy.cursor <—-

alierarchy.cursor,.firstChild;
end;

task moveParent
(alierarchy : Hierarchy);

{ This task moves the cursor to the ModuledTree which
is the parent of the current ModuleOTree. !

pre :

aHierarchy.cursor.parent <> nil;
delta :
alHierarchy.cursor <-- aHierarchy.cursor.parent;
end;

task moveToRoot
(aHierarchy : Hierarchy):

{ This task moves the cursor to the rcot ModuleCTree.
i
delta :

aHierarchy.cursor <-- aHierarchy.root:
end;

task insertPred

(aHierarchy : Hierarchy;
moduleName : String);

{ This task inserts a ModuleOTree as the
of the current ModuleOTree.
given name already exists, then a copy of the old
ModuleOTree whose root module has that name, is jn-
serted. Otherwise, a new ModuleOTree containing a
single module is created and inserted. The cursor is
then moved to the root of the inserted ModuleOTree.

Inserting a predecessor of the root ModuleOTree is
forbidden.

predecessor
1f a module with the

pre :

aHierarchy.cursor.parent <> nil;
delta :

instance oldModuleOTree of ModuleOTree;

&IPS SESSION 84 110

S
oldModule0Tree <-~ ModuleQTreeS$Find pre :

(aHierarchy.root, moduleName); ModuleOTreeSFind (moduleName) = nil;
if oldModuleOTree <> nil then delta :
ModuleOTreeSinsertPred (aHierarchy.cursor, ModuleOTreeSinsertParent (aHierarchy.cursor,
oldModuleOTree) ; ModuleQTreeScreate (moduleName)):
else aHierarchy.cursor <-- aHierarchy.cursor.pareat; .
ModuleOTreeSinsertPred (aHierarciy.cursor, end; - {
ModuleOTreeScreate (moduleName)): task pastePred ;
endif; (aHierarchy : Hierarchy:
aHierarchy.cursor <-- aHierarchy.cursor.pred; saveDictionary : ModuleOTreeDictionary;
end; . saveName : String);
task insertSucc { This task pastes a Module®Tree as the predecessor of
(aHierarchy : Hierarchy; the current ModuleOTree. The MocduleOTree to be
moduleName : String); pasted is copied from from the save dictionary loca-
tion specified by the save name. The cursor is than
{ This task inserts a ModuleOTree as the successor of moved to the root of the pasted ModuleOTree. Past -
the current ModuleOTree. If a module with the given ing a predecessor of the root ModuleOTree is forbid- |
name already exists, then a copy of the old ModuleO- den. |)
Tree whose root module has that name, is inserted. |
Otherwise, a new ModuleOTree containing a single pre : |
module is created and inserted. The cursor is then alierarchy.cursor.parent <> nil: w |
moved to the root of the inserted ModuleOTree. saveDictionary[saveName] <> nil: ?
Insertion of a successor of the root ModuleOTree is delta : |

forbidden. } ModuleOTreeSinsertPred (alierarchy.cursor,

saveDictionary[saveNamel) ;

pre : . aHierarchy.cursor <-- aHierarchy.cursor.pred;
aHierarchy.cursor.parent <> nil; end; '
delta :

instance oldModuleOTree of ModuleOTree:

task pasteSuce
oldModuleOTree <-- ModuleOTreeSFind

J {aHierarchy : Hierarchy;
. (aHierarchy.roor, moduleName); saveDicticnary : ModuleOlreeDictionary;
if oldModuleOTree <> nil then saveName : String);

ModuleOTreeSinsertSuce (aHierarchy.cursor,

oldModuleOTree); { This task pastes a ModuleOTree as the succesgsor of

the current ModuleOTree. The ModuleOTree tfo be
pasted is copied from from the save dictionary loca~ :
tion specified by the save name. The cursor is then !

else
ModuleOTreeSinsertSucc (aHierarchy.cursor,

ModuleOTreeScreate (moduleName));
endif;

‘ . moved to the rool of the pasted ModuleOTree. Past~ j

aierarchy.cursor <-- aHierarchy.cursor.succ: ing & successor of the root ModuleOTree is forbid- :
end; den. } !
task ingertLastChild pre :

(aHierarchy : Hierarchy;

e aHierarchy.cursor.parent <> nily
moduleName : String);

saveDictionary{saveName] <> nji;
delta :
ModuleOTreeSingertSuce (aHierarchy.cursor,
saveDictionary[saveName]):
alierarchy.cursor <-- altierarchy.cursor.succ; !

{ This task inserts 2 ModuleOTree as tha last child of
the current ModuleOTree. If a module with the given
name already exists, then a copy of the old ModuleO-
Tree whose root module has that name, is inserted.

ond;
Otherwise, a new ModuleOTrese containing a single
module is created and ingerted. The cursor is not task pastelLastChild |
moved. } (aHierarchy : Hierarchy: ’ ,
saveDictionary : ModuieUlreeDiclionary; |
delta : saveName : String);

instance oldModuleOTree of ModuleOTree:

oldModuleOTree <-- ModuleOTreeSFind { This task pastes a3 ModuleOTree as the last child of
(aHierarchy.root, moduleName) ; the current ModuleOTree. The ModuleOTree to be
if oldModuleOTree <> nil then pasted is copied from from the save dictionary loca~
ModuleOTreeSinsertLastChild tion specified by the save name. The cursor is not

(aHierarchy.cursor, oldModuleOTree) ; moved,
slse :
ModuleOTreeSinsertlLastChild pre : !
(aHlierarchy.cursor, ModuleOTreeScreate saveDictionary[saveName] <> nil: |
(moduleName)) ; delta : |
endif; ModuleOTreeSinsertlastChild (aHierarchy_cursor, |
end: saveDictionary[saveName]):
end; ;
task insertParent E
(aHierarchy : Hierarchy; task writeFromDictionary
moduleName : String); (saveDic.ionary : ModuleOTreeDictionary: :
saveName ¢ String; }
{ This task inserts a ModuleOTree consisting of a sin- fileName : String); |
gle new wmodule, as the parent of the current Modu-
1eOTree. The cursor is then moved to the root of Lhe { This task writes s ModuleOTree from the save dic- ,

inserted ModuleOTree. }

tionary at the given save name, to a disk File. }

: &IPS SESSION 84 111

- - . P J—— . e e . N
- — g .
BN .

—_ N —

pre : - o
saveDictionary[saveName] <> nil;
delta :

MeoduleOTreeSwriteToFile
(saveDictionary[ssveNama], EileName);
end;

task readIntoDictionary
(saveDictionary : ModuleOTreeDictionary;
saveName : String;
fileName : String);
{ This task reads a ModuleOTree from a file to the
save dictionary at the location of the given save
name.

delta : :
saveDictionary([saveName] <--
ModuleOTreeSreadFromFile (fileName):
ond;

task copySubtres
(aHierarchy : Hierarchy;

saveDictionary : ModuleOTreeDictionary;

saveName ¢ String);

{ This task makes a copy of the current ModuleOTree
and s&Ves it in the ModuleOTree save dictionary at
the position of the save name. |}

delta :

saveDictionary[saveName] <-- ModuleOTreeScopy
(aHierarchy.cursor);
end;

ol

task deleteSubtree

(aHierarchy : Hierarchy;
saveDictionary : ModuleOTreeDictionary;
saveName : String);

{ This task moves the current ModuleOTree to the Modu-
leOTree save dictionary at the position of the save
name. The root ModuleOTree cannot be moved. If the

current ModuleOTree had a successor, then the cursor
woves to it. Otherwise, if the current ModuleOTree
had a predecessor then the cursor moves to it., Oth~
erwise, the cursor moves to the parent of the
current ModuleOTree. }

pre :
aHierarchy.cursor.pareat <> nil:
delta :
if aHierarchy.cursor.suce <> nil then
Cursor$moveSucc (aHierarchy.cursor);
aHierarchy.cursor <-- aHierarchy.cursor.succ;
saveDictionary[saveName] <--
ModuleOTreeSdelete
(aHierarchy.curlor.pred);
else
if aHierarchy.cursor.pred <> nil then
aHierarchy.cursor <--
aHierarchy.cursor.pred;
saveDictionary[saveName] <--
ModuleOTreeSdelete
(aHierarchy.cursor.suce) ;
else
aHierarchy.cursor <--
aHierarchy.cursor.parent;
saveDictionary([saveName] <—-
ModuleOTreeSdelete
(aﬂiararchy.cursor.1eftChild);
endif;
endif;
end;

APPENDIX B

The following is the grammar of the intermediate
language for JCUYDE, described in Backus-Naur form.
Non-terminals are enclosed in angular brackets ('"<>'")
and ferminals are underlined. .

‘©
It should be noted that the definition of expressions
in this language are different from those in other
languages and notably Pascal. This language does not
depend on iwmplicit arithmetic hierarcny to determine
the order of the operations, rather, it uses explicit
parenthesizing.

<module code> ::= begin <statement list> end;

<statement list> ::= <gtatement> ; <gtatement list> !
<statement>

<statement> ::= <simple statement> |
<gtructured statement>

<simple statement> ::~ <assignment statement> I

<procedure statement> | <return statement> !
<emply statement>

<assignment statement> ::= <variable> <-
<simple expression>

<variable> ::= <identifier> | <indexed variable>
<indexed variable> ::= <variable> [<expression list>]

<expression list> ::= <gimple expression> ,
<expression list> | <simple expression>

<procedure statement> ::= <identifier> (
<parameter list>)

<parameter list> ::= <nonempty parameter list> | <nuli>

<“nonemply parameter list> ::= <actual parameter> ,
<nonemply parameier list> | <actual parameler>

<actual parameter> ::= <simple expression>
<return statement> ::= return <expression>
<emply statement> ::= '<gstatemenf>"'

<structured statement> ::= <if statement> |
<while statement>

<if statement> ::= if <expression> then
“statement list> <else part> end; £

<else part> ::= else <statement [ist> I <nul1>

<while statement> ::~ while <expression> do
“statement list> endwhile

<expression> ;:= (<simple expression>)
<simple expression> ::= <term> <operator> <term>

<operator> ::
I * 1 div|m

B
=]

B oA
I

“term> ::= <factor> | - <factor> | not <factor>

<factor> ::= <variable> | <unsigned constant> |
<expression> | <function designator>

<unsigned constant> ;:= <unsigned number>

<function designator> ::= <identifier> (
<parameter list>)

@HPS SESSION 84 2
I

