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ABSTRACT

Many applications that use geographical databases (a.k.a. gazetteers)
rely on the accuracy of the information in the database. However,
poor data quality is an issue when data is integrated from multiple
sources with different quality constraints and sometimes with little
information about the sources. One major consequence of this is
that the geographical scope of a location and/or its position may
not be known or may not be accurate.

In this paper, we study the problem of detecting the scope of
locations in a geographical database and its applications in iden-
tifying inconsistencies and improving the quality of a gazetteer.
We develop novel strategies, including probabilistic and geometric
approaches, to accurately derive the geographical scope of places
based on the spatial hierarchy of a gazetteer as well as other public
information (such as area) that may be available. We show how
the boundary information derived here can be useful in identifying
inconsistencies, enhancing the location hierarchy and improving
the applications that rely on gazetteers. Our experimental evalu-
ation on two public-domain gazetteers reveals that the proposed
approaches significantly outperform, in terms of the accuracy of
the geographical bounding boxes, a baseline that is based on the
parent-child relationship of a gazetteer. Among applications, we
show that the boundary information derived here can move more
than 20% of locations in a public gazetteer to better positions in the
hierarchy and that the accuracy of those moves is over 90%.
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1 INTRODUCTION

Gazetteers are extensively used in many different domains and ap-
plications because of their wide coverage and detailed information
about places. For example, an incoming tweet may have the GPS
coordinates of the capturing device but to detect a populated place
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the tweet is coming from, one may use a gazetteer such as GeoN-
ames [31] to map those coordinates to an actual location entity.
There is an increasing number of different devices that record GPS
coordinates (e.g. phones, cars, cameras, etc.), and mapping the GPS
coordinates to a an administrative location or a populated place
can be a useful service, for example, in dispatching services such
as ambulance, police, etc. The literature also reports numerous do-
mains where gazetteers are used, including toponym resolution in
text [15], geotagging tweets [35], documents [6] and entities [33],
etc. To support many of these applications, one needs to both ef-
fectively and efficiently join a gazetteer with other geo-coded data.
GeoNames reports serving over 150 million web service requests
per day (as of October 2017), and many of those services can benefit
from more accurate information about places and their boundaries.

However, there are a few challenges that hinder progress in this
area: (1) most public gazetteers either do not have bounding boxes
for many of their locations (e.g. GeoNames) or their bounding boxes
are not accurate (e.g. OSMNames!, see Section 5.1 for details). In the
absence of a bounding box, there is no direct way of checking if an
entity falls inside or outside a region boundary?, and applications
have to implement their own ad-hoc solutions; (2) data in a gazetteer
is prepared by public and is not necessarily accurate especially
for less populated places [1]; (3) there are inconsistencies within
gazetteers and in relationship with other sources (see Fig. 1).

Our approach to address those challenges is through maintain-
ing bounding boxes for places. Attaching a bounding box to each
place has a number of benefits, including more efficient support for
reverse geo-coding queries and better monitoring and enforcement
of consistency constraints in the form of relationships between
bounding boxes. Since boundaries change due to growths, splits
and mergers, maintaining bounding boxes is a continuous process.

The problem to be studied in this paper is if a bounding box
can be accurately constructed for each place based on incomplete
and sometimes erroneous information that is available, and if those
bounding boxes improve the quality of a gazetteer. We take, as a
bounding box, the minimum bounding rectangle (MBR) that satisfy
all stated constraints in a gazetteer including the parent-child re-
lationships. Despite their imprecision in some cases, for example,
compared to polygons, MBRs provide a simple abstraction that
is more efficient for querying [3] and enforcing constraints [22].
Sometimes the stated constraints cannot all be satisfied when cre-
ating MBRs. We formalize the search for an MBR as a probabilistic
optimization, which tries to find the most likely MBR by dropping
the least likely constraints.

Our contributions can be summarized as: (1) We provide a sys-
tematic study of the problem of improving and enriching a gazetteer

Uhttp://osmnames.org

2Reverse Geocoding API from Google and other search engines convert the coordinates
of a point on the map to a human readable location or address, but the details of their
proprietary solutions often are not made public.
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Figure 1: Examples of inconsistencies between a gazetteer and other sources. (a) MBR of the US state Maryland is overestimated due to outliers,
(b) MBR of Malaita, a province in Solomon Islands, is underestimated due to less data coverage, and (c) the given center is far from the center of
the MBR. (childrenMBR is the bounding box of the children, as listed in Geonames for the quoted place, and googleMBR is the MBR returned
by Google Maps; the child count for each place is indicated, and the center and the children are shown with a blue and pink dots respectively.)

using bounding boxes of places; to the best of our knowledge, this
is the first time such a study over millions of places is conducted. (2)
We propose strategies for detecting and resolving inconsistencies in
a gazetteer. (3) We evaluate our strategies and report their accuracy
in detecting the boundaries of places and in improving the places
hierarchy. (4) We report on the effectiveness of our bounding boxes
in refining the places hierarchy and in augmenting the gazetteer
with other data sources including YFCC100M [30].

The rest of this paper is organized as follows: Section 2 reviews
the related work, and Section 3 presents our proposed strategies for
constructing minimum bounding rectangles of places. Section 4 lists
some application areas and settings. Our algorithms are evaluated
in Section 5. Section 6 concludes the paper.

2 RELATED WORK

The literature related to our work can be grouped into (1) estimation
of the spatial extent of geographic entities, (2) conflict resolution
and data cleansing techniques, and (3) automatic gazetteer expan-
sion and enrichment.

Estimation of the spatial extent of geographic entities The
geographic boundary of a place can be estimated using geo-tagged
entities such as photos [14], videos, and online documents. Chen
et al. [8] develop a method to find the spatial extent of places with
vague boundaries. They define geographical boundary of a place
using the density of Flickr photos mapped to a region. The au-
thors use Kernel Density Estimation to interpolate the boundary
for regions where photos are sparse. Parker and Downs [19] cluster
points before forming a minimum convex envelope to enclose each
cluster. A drawback of both approaches is that if a place is widely
spread and have disjoint regions (e.g. places containing islands such
as Hawaii), then each region forms its own boundary instead of
forming a boundary at a particular level such as country, province
or district. For polygonal boundaries of places, Voronoi diagrams
are used to approximate the extent of places from their centroids[2].
Also a notion of fuzzy MBR to model the spatial extent of a geo-
graphical location is introduced by Somodevilla et al. [28], though
no evaluation on the quality or the accuracy is provided.

Conlflict resolution and data cleaning Conflict resolution can
be viewed as making decisions between different versions of data
to determine a golden record. There is a large body of work in this
area (e.g. see the survey by Bleiholder and Naumann [4] and the
tutorial note by Dong and Naumann [10]). In a more recent work,
Prokoshyna et al. [23] combine logical reasoning and a quantitative
method to develop a data cleansing approach. The quantitative
method in this work involves setting some constraints based on
the statistical properties of attribute values and flagging an incon-
sistency if such constraints are violated. The authors propose a
minimal-set repair algorithm to find attribute values that minimize
a statistical distortion. Volha et al. [5] resolve conflicts in the context
of dbpedia using a fusion function, which is learned from labeled
data. The set of fusion functions are manually defined in advance
by domain experts. As a generic cleaning technique, outlier detec-
tion may be used to filter objects which do not follow the general
expected underlying distribution. Two commonly used techniques
in spatial domains are Boxplot [13] and Bagplot [25], which are
evaluated as part of our proposed heuristic approaches.
Automatic gazetteer expansion and enrichment Automatic
gazetteer creation or enrichment involves adding new records or
attributes, in the form of a new place or a missing feature of an
existing place. Popescu et al. [20] create a gazetteer using diverse
information sources and different algorithms for entity extraction,
categorization, coordinate discovery and ranking. More recently,
Oliveira et al. [18] attempt to enrich the GeoSEn [7] gazetteer using
the geographical information gathered through crowd sourcing.
The authors augment the spatial hierarchy of the gazetteer by
adding places at what appears to be district and street granularity.
These works can be seen as orthogonal to ours.

3 GEOGRAPHICAL SCOPING

Given a set of containment relationships and constraints for places
in a gazetteer, we want to construct a bounding box for each place
such that ideally all stated or known constraints are satisfied. We
take as the bounding box of a place, any minimum bounding rec-
tangle (MBR) that is parallel to the latitude and the longitude axes



and satisfy the constraints. This does not necessarily give the most
accurate bounding box especially if the true bounding box is not
convex; however, compared to arbitrary polygons, MBRs are more
efficient for checking containment relationships and constraints. A
challenge in detecting the spatial extent of a place is that often there
is not sufficient information about a place and the relationships can
be conflicting or contradictory. For example, the recorded center for
Hawaii in GeoNames, as shown in Figure 1(c), is quite far from the
center of its MBR. Also, as shown in Figure 1(b), there are no child
locations in the northern region of googleMBR and it is difficult to
construct this MBR based on parent-child relationships alone.

3.1 Hierarchical Approach

One strategy for building an MBR is to enforce the containment
relationships, i.e. each parent MBR must contain the MBRs of its
children. Gazetteers are good at describing the containment re-
lationships between places. For example, GeoNames places each
location into an administrative level such as country or state and al-
lows queries to retrieve the children within an administrative level.
The bounds of the MBR of a place can be calculated in a bottom-up
approach by taking the minimum of south-west coordinates and
the maximum of north-east coordinates of all children of the place
in the spatial hierarchy. A major problem with this strategy is that
the number of children can vary greatly for different places. For
example, more populated places tend to have more children than
rural towns, water bodies, natural regions, etc. Another problem is
the skewed distribution of the children and that the children are
not always spread over the whole region boundary (as shown in
Fig. 1(b) and 1(c)).

3.2 Geometric Approach

A major drawback of the hierarchical approach is that for places
that have either very few or no children in the gazetteer, no good
geographical extent can be obtained. For example, the area of an
MBR for Malaita province, constructed from points in GeoNames
(as shown in Fig. 1(b)), is approximately 19 times smaller than that
of the bounding box obtained from Google Maps. Our geometric
approach aims at addressing this problem.

Given the center point ¢ and the area a of a place, one can con-
struct an infinite number of rectangles, all centered at ¢ with an
area a; with no additional information, it is hard to predict which
rectangle is more likely. That said, our next statement gives some
evidence that maybe a square is a better choice.

CONJECTURE 3.1. Let R be the set of all rectangles with a center
point c and area a and r € R. Assuming that all rectangles are equally
likely, the expected area of overlap between R and r is maximized
when r is a square.

Our geometric approach constructs as the MBR of the place a
square centered at C and with an area A. The bounds of the MBR
can be obtained as follows: the latitudes of north-east (NE;,;) and
south-west (SW,;) points are obtained by shifting the latitude of
the center in north and south by a factor F given as

NEpt =Cjqr + F and SWy = Cyyy — F

where F = (VA)/(2 * L), L is the distance between two consecutive
latitudes (~ 111 km) and Cj4; and Cj,p are the latitude and lon-
gitude of center C. The longitudes of the endpoints are obtained
similarly except that the distance between two consecutive longi-
tudes shrinks as we move toward the poles. Hence we first obtain
the distance between two longitudes at a given latitude D;,; before
shifting the longitude of the center by Fpe and Fs,,, defined as:

Fne = (VA)/(2 % Dpetay) and  Fsay = (VA)/(2 # Dgyyiar)

where D, .1, = L % cosine((NEj,; * 7)/180) (see [29] for details),
and Dg,,14; = L * cosine((SWy,; * )/180). Thus

NElong = clang + Fpe and Swlong = Clong = Fsw.

Note that the accuracy of the coordinates of the endpoints depends
on the accuracy of L and that of the given center C.

The bounding box estimated using this approach is expected
to be accurate when the child locations are distributed uniformly
around the given center. However, this approach may not perform
well if the child locations include outliers or the given center is
away from the mass of child locations.

3.3 Probabilistic Approach

Geographic information in a gazetteer can be both incomplete and
inaccurate, and this can lead to inconsistencies. Some of those in-
consistencies may be detected using a rule-based method, but the
main challenge which still remains is how to handle the uncertainty
in spatial data. If each fact or statement in a gazetteer can be as-
signed a probability that it is true, then detecting a bounding box
for a place can be treated as a constraint optimization problem.

3.3.1 The Model. Locations in a gazetteer are described by
a latitude and a longitude; public gazetteers often do not provide
much detail on how the coordinates are obtained and if the given
coordinate is actually near the center point of the MBR of the
place. To test this, we randomly selected 1000 places each from
GeoNames and OSMNames. The coordinates of these places were
checked against the center point of the bounding box obtained
from a different source (in our case MBR obtained from Google
Maps referred to as googleMBR). We found that only 63% of places
in GeoNames and about 97% of the places in OSMNames had a
coordinate within 10 km of the center obtained from googleMBR.
Modeling the center point: Let d. denote the distance between
a given center c of a place and its true MBR center. If we assume d,
follows the normal distribution with parameters y and o, then

L e [20?
aV2r
where p and o are respectively the mean and the standard devia-
tion of d¢. Let Peenrer denote this probability for fixed values of p
and o. The parameters of the distribution can be easily estimated
from the data. In our random sample of 1000 places, y and o are
88.894 and 408.760 for GeoNames and 2.057 and 7.09 for OSMNames
respectively.
Modeling children: Let g be the probability that an arbitrary loca-
tion is placed under a correct parent in the gazetteer. The value of g
can be estimated by checking for each place in a sample whether its
children are assigned a correct parent node. In our sample of 1000
places, the value of g is calculated as 0.968 for GeoNames and 0.882

Pr(dc|p.0) = 1)



for OSMNames respectively. One may observe that the probability
that an arbitrary location is placed under a correct parent is rela-
tively high; hence based on this empirical result and without much
additional knowledge of which places may be correct or incorrect
children, an arbitrarily chosen child is more likely to be correct
than incorrect hence better be included in the parent MBR. In other
words, for a parent place with n children and an MBR that includes
i (i < n) of its children, the probability that a random child location
of the parent is enclosed in the MBR can be written as
i
Pehitdren = ; (2
Putting it together: Assuming independence for the two events
in Equations 1 and 2, we can put together the two probabilities into
an objective function. Given a place with center ¢, MBR area A and
children set S, we want to find a set S’ C S of children such that
argmax (Pchitdren - Peenter)
S§'cS (3)
subject to area(MBR(S)) < A

where area(MBR(S”)) refers to the area of MBR formed from places
in §’. Everything equal, the model selects an MBR with a center
point closest to the given center c. Equation 3 provides a way to
model the inclusion and exclusion of locations under an MBR and
to estimate the center of the MBR with high certainty.

3.3.2 Optimization. Optimizing Eq. 3 can be computationally
intensive since the number of possible MBRs is only bounded by the
size of the power set of S. The problem may be broken down into
two cases: (1) there is an MBR that includes all points and rectangles
in S and the area of the MBR is not larger than A, (2) there is an
MBR that includes all points and rectangles in S and has an area
larger than A. For (1), the MBR that includes all points in S with
an area not exceeding A will maximize P.p;j4yen- As noted in our
sample of 1000 places, there is more uncertainty in finding a correct
center than including a correct child, hence one may maximize the
term P.pi1dren before maximizing Peepter. This means the MBR
that includes all points in S can simply be expanded (if needed),
moving the center of the MBR to the given center and maximizing
the objective function, without violating the area constraint.

Now consider the case where there is no MBR that includes
all children with an area less than or equal to A. With the same
reasoning, we may optimize P.p;;4ren before plugging in Peepnser.
Naive algorithm: A naive approach to perform this optimization is
to enumerate all possible MBRs and select the one that maximizes
the objective function in Eq. 3. With n data points, there are n
possible choices for each side of an MBR; hence there are O(n?)
MBRs to choose from. Among those MBRs, the algorithm selects the
MBR that maximizes the objective function. This is an expensive
process for large values of n. Our next algorithm prunes the search
space without affecting the correctness of the result.

Improved algorithm: To further prune the search space, one may
only consider MBRs where the constraint on the area is not violated.
Our improved algorithm first finds an initial solution by dropping
extreme points in each direction until the area constraint is met.
The algorithm then tries to improve upon the initial solution while
making sure the area constraint is satisfied. Let m be the number of
points that are dropped to find the initial solution. This sets a limit

Algorithm 1: Find an optimal MBR (as per Equation 3) when
child locations are all points
Input: (1) A - area of MBR of the place P,
(2) C - centre of the place P,
(3) S - set of n unique locations {p;...pn}, under P
1 bestMBR « Nil
2 maxProbability « 0

3 Drop furthest points (one at a time) from each side
4 At each drop, form an MBR for the remaining points. Stop
when the area is < A and let MBR at this point be M’
5 Let m be the number of points strictly outside M’
for i = 0to mdo

6

7 for j = 0to m-ido

8 for k = 0 to m-i-j do

9 for [ = 0 to m-i-j-k do

10 currentMBR « the MBR formed after
dropping i, j, k, 1 points from north, east, west
and south directions in S

11 if area(currentMBR) > A then

12 ‘ continue

13 X  (i+j+k+]) // # of excluded places

14 C’ « centre of currentMBR

15 Calculate Peenrer using C and C’ in Eq. 1

16 P.hildren = (n-x)/n (as in Eq. 2)

17 currProb < Pepitdren - Peenter

18 if currProb > maxProbability then

19 maxProbability < currProb

20 bestMBR « currentMBR

1 return bestMBR

)

on the number of points in each side that an MBR can pass through.
There are O(m*) such MBRs. The number of wrong entries in a
gazetteer is expected to be a small fraction, hence m is expected to
be much smaller than n. In our experiments with GeoNames and
OSMNames, the maximum respective value of m was 62 and 78
while that for n was 74765 and 708. In terms of the running time,
the improved algorithm was faster by up to 6 orders of magnitude
for n < 100, and the gap was getting bigger for places that had
more children to a point where it was not possible to run the naive
algorithm on an Intel Core i5 machine running at 2.7GHz with
8GB RAM. One can also do a binary search when selecting the last
side of the MBR, reducing the complexity of the naive algorithm
to O(n3log(n)) and that of the improved algorithm to O(m>log(m)).
The full details of the improved algorithm are given in Algorithm 1.

A limitation of our probabilistic optimization model (also referred
to as POM in our experiments) is that the optimization does not
kick in unless the area of children MBR is greater than or equal to
the known area of the place. This is addressed in our next approach.

3.4 Heuristic Approaches

The MBR of children (as discussed in Section 3.1) can vary dra-
matically in shape and size due to uneven distribution or lack of
enough child locations under the parent. To construct an MBR for



such places, heuristic approaches may be used. Our first heuristic
is based on detecting outlier children.

Outliers removed Gazetteers sometimes have locations that are
wrongly placed. Such placements may show as an outlier especially
if the wrong child is quite far from other children listed under the
same parent. Hence, an outlier detection method may be used to
identify and remove such places before constructing an MBR. Two
approaches that are used in geographical contexts are Boxplot [32]
and Bagplot [25]. Since boxplot is a univariate method, it can be
applied across the latitude and longitude dimensions independently.
A point may be deemed an outlier if it is classified as an outlier in
any one of the two dimensions. Bagplot is a bivariate extension
of boxplot, which generates a convex hull with 50% of the points
(called a ‘bag’) and an outer loop (known as ‘fence’), which can vary
in size depending on the number of points one wants to include.
We expand the outer loop till the area of the MBR formed by the
enclosed points is closest or equal to the given area of the place. All
points outside the outer loop are excluded from the MBR.
Hybrid MBR An MBR of a place may be obtained using its center
point and area; an MBR of a place may also be obtained based on
the children listed. If we treat each MBR as a random variable which
is 1 for points inside the MBR and 0 for points that fall outside, the
region where the two MBRs overlap is where both random variables
are taking the value of 1. The rectangle marked by the intersection
of the two MBRs is expected to give a more reliable description of
the boundary. However, the region of overlap can be much smaller
than the actual MBR. We next discuss how this intersection region
can be expanded such that its area matches the given area.

(1) Hybrid MBR with uniform enlargement (H-enlarge) Let | and w
denote the length and the width of an MBR. One way to enlarge
the MBR is to enlarge both [ and w by a constant s. Given an area
a, we want (I + s)(w + s) to be close to a. In other words, the value
of s can be obtained by solving the following quadratic equation:

ss+(+ws+(Iw—-a)=0 wheres> 0.

The coordinates of the expanded MBR are obtained by shifting the
latitude and longitude of north-east and south-west corners by s/2
degree in each direction (as in Section 3.2).

(2) Hybrid MBR with scaling (H-scale) The sides of the intersection
region can be scaled by a factor s such that the area of the expanded
MBR becomes a. Hence, the value of s can be obtained as

s = +(a/lw).

It should be noted that outliers may be removed before perform-
ing any of the above expansions. Also, when there is no intersection
between the two MBRs, the expansion may be applied to the MBR
that is expected to be more accurate (our experiments use children
MBR in those cases).

As an example, Figure 2 depicts the MBRs for Budapest, Hungary,
obtained using different methods discussed in this section.

4 IMPROVING A GAZETTEER

Maintaining the spatial footprints of places in a gazetteer can both
improve the quality of the database and offer benefits to other
applications that use it. We study three such areas of improvements
(see Sections 4.1, 4.2 and 5.2 for our experimental evaluation).
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Figure 2: The MBRs for Budapest, Hungary, obtained using different
methods. (The blue and cyan dots represent the given center and the
center obtained from the POM approach respectively. The MBR for
H-enlarge overlaps with that of H-scale, hence not visible, and the
yellow MBR obtained from the geometric approach is expected to
be square but it doesn’t look like one because of the way endpoint
coordinates are calculated on the spherical surface of earth and the
varying distance between longitudes, as discussed in Section 3.2.)

4.1 Gazetteer Refinement

The hierarchy of a gazetteer may be refined based on the spatial
footprints of places to improve its overall accuracy. Here are two
such refinements that we have experimented with.

Change of parent The MBR of each parent node in a gazetteer is
expected to contain the MBR of its children. A child node c listed
under a parent node p may be considered for a possible parent
change if this containment relationship is violated. In such cases,
there can be multiple locations that can contain the MBR of ¢ and
they may or may not be true parent places. One approach to reduce
the likelihood of selecting a wrong parent is through setting some
constraints. For example, one may change the parent from p to p’
if p’ is the only place that can contain c.

Restructuring children Sometimes locations are not placed at
the right level or granularity; ideally we want to place each child
at the lowest level of the hierarchy. A restructuring can check for
each place c in level [ if its MBR is fully contained in the MBR of
another place p at the same level. If one such relationship holds and
p is the only node that has this relationship with c, then it is likely
that c is a child of p and better be placed under p. This process may
continue until no more move is possible.

4.2 Gazetteer Enrichment via Geotagging

A gazetteer may be enriched by including or integrating informa-
tion about geographic locations, such as tags, tweets, news, photos,
etc. Since many resources on the Web are not geotagged, a related
question is if using the geographical extent of places can improve
geotagging; we study this in the context of geotagging photos and
videos from Flickr.

One approach for geotagging is to divide the earth surface into a
grid of equal-sized cells [16, 26, 27] and to predict the most probable



cell for a given photo or video. A problem with fixed-sized cells is
that the spatial scope of a place can be distributed over several cells
(when the cells are too small) or multiple geographical boundaries
can be collapsed into one cell (when the cells are too large), affecting
the accuracy. An alternative is to use MBRs to better maintain the
locality relationships and place boundaries A geotagging using
MBRs can be carried out in two steps as follows:

(1) MBR prediction Based on the hypothesis that different users
inside the boundaries of a place may use similar tags to describe
the place, one may first predict an MBR for a photo/video using the
textual annotations attached. The relevance of a tag t to an MBR
can be expressed in terms of the probability that a user inside the
MBR m; uses t to tag his/her photos, i.e.

# of users who use tag t; in MBR m;

tIM;) =
p(tiIM;) # of users in mbr m;

where M; is the model of MBR m;. To avoid zeroing the score in
case a tag is not seen in mj, a smoothing function may be used.
Using Jelinek-Mercer smoothing [34], we have

p(tilmj) = ap(ti\M;) + (1 = )p(tilMyprs)
where « is the smoothing factor with a value in the range (0, 1) and
p(ti|Mp,prs) is the model for all MBRs, defined as

# of users who use tag t; over all MBRs

ti|M =
pUtilMmprs) # of users over all MBRs

In our experiment, we set the value of « at 0.8. In general, & can be
set using a validation set, trying different values of the smoothing
factor and selecting a value that gives the best MBR prediction over
the validation set. Assuming independence between the tags inside
an MBR, the relevance score of a test instance T with tags 1, ..., t,
is given as

p(T|mj) = l_lp(ti|mj)-
i=1

In our experiments, we use the log of p(T|m;) as our scoring func-
tion for numerical stability. One may note that the relevance score
can be biased toward user-specific tags, which often do not carry
any location information (e.g. person name). To avoid such am-
biguity, we remove all tags which are used just by a single user.
Furthermore, to allow a locality of the tags, the same user in differ-
ent cells or MBRs is considered as a new user. Finally, the MBR with
the maximum score is selected. In case no MBR is found (which will
happen if none of the tags of the test instance is seen during train-
ing), one may predict the MBR which has the maximum number of
photos or videos assigned.

(2) Coordinate estimation Given the MBR of a photo or a video,
the actual coordinate within the MBR can be predicted based on the
same technique that finds the coordinates within a grid cell [27].

4.3 Enforcing topological constraints

The accuracy and correctness of a gazetteer may be warranted
through topological constraints, which can harness the relation-
ships between MBRs such as containment, disjointness, overlap,
etc. Such constraints may be classified into hard constraints (those
which cannot be violated) and soft constraints (those which can

be violated but the violations are rare). An example of the former,
expressed in terms of MBRs, is “if the MBR of place A does not
contain the MBR of place B, then location A is not part-of or doesn’t
contain location B

Level | # of places U o Threshold

a =0.05 a =0.01
ADM1 2000 0.2756 | 0.1451 0.514 0.613
ADM2 2000 0.1819 | 0.1655 0.454 0.566
ADM3 2000 0.1634 | 0.1462 0.403 0.503

Table 1: Expected area of overlap between MBRs at each level (ADM1
= province, ADM2 = district or large city, ADM3 = locality or small
town) and the respective thresholds at each level of significance.

Soft constraints may be enforced, based on parameters such as
the expected area of overlap between MBRs, whcih may be esti-
mated from data. For example, Table 1 shows a few statistics for
the normalized overlap area of MBRs at different administrative
levels, each based on a random sample of 2000 places from GeoN-
ames. While y and o are the mean and the standard deviation of
the normalized overlap areas of places, the column threshold gives
an upper bound on the mean normalized overlap area of a place,
calculated using one-tailed critical values of z-score (Z = 1.645 and
2.326 corresponding to a = 0.05 and 0.01 respectively) at different
levels of significance and setting the sample size ‘n’ as one. Exam-
ples of soft constraints based on Table 1 are: (SC1) “for any location
at ADM2 level, its average normalized overlap area with all other
places cannot be much below or higher than the mean normalized
overlap area (0.1819),” and (SC2) “if an update at ADM3 level makes
the mean normalized overlap area of a place greater than 0.403, then
the null hypothesis that the update follows the data distribution
can be rejected at @ = 0.05”

5 EXPERIMENTAL EVALUATION

We evaluate the proposed approaches in terms of both the accuracy
and the effectiveness of the bounding boxes that are constructed.

5.1 Accuracy of an MBR

The accuracy of a bounding box of a place may be measured against
published data from authoritative sources such as government agen-
cies and international organization bodies. One such official dataset
that we are aware of, and is used in our experiments, is the US
Census dataset? which provides cartographic boundary files for
places in the US. An MBR of a place from the boundary data can
be obtained by finding the maximum and the minimum of all the
given coordinates. We are not aware of similar comprehensive list
of boundary regions for places outside the US, but there are sources
that provide data on a best-effort basis. As one such source, we use
Google Reverse Geocoding API* to fetch the ‘true’ bounding box
for a location. Google Maps has been used in similar context in the
literature [12, 17]. In our experiments, we evaluate the accuracy of
an MBR for places in the US using both the US Census data and
Google Maps as baselines; for each place outside the US, the MBR
obtained from Google Maps is used as a baseline.

Shttps://www.census.gov/geo/maps-data/data/kml/kml_state.html
4https://developers.google.com/maps/documentation/geocoding/intro
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Dataset and Preprocessing Our evaluation is conducted using
the two large public gazetteers, namely GeoNames and OSMNames.
The features used in our evaluation are (1) the latitude and longitude
of each place, which we assume as the center of the MBR of the place,
and (2) the parent-child relationship expressed in the spatial hierar-
chy. After removing all locations with non-unique geo-coordinates,
we put together the following datasets. From GeoNames, we ex-
tracted (1) the set of 50 USA states (Geo-50), (2) 540 random world
locations each with at least one child (Geo-540), and (3) 140 random
world places each with at least one child and with the area of its
children MBR larger than the given area of the place (Geo-140).
From OSMNames, we similarly extracted (1) 1500 random locations
each with at least one child (OSM-1500) and (2) 160 random loca-
tions (referred to as OSM-160) with the same constraints as those
for Geo-140. As the MBR area of a place, we used the area of the
MBR returned by Google and from the US Census dataset. In our
experiments, the radius of the earth is taken as 6371 km and the
distance between consecutive longitudes at equator is 111.0 km.
Evaluation Measure The accuracy of a bounding box is measured
in terms of its coverage of the actual area of the place and the
fraction of child places it encloses. For a predicted MBR P and true
MBR T, the following measures of accuracy are used:

e Area Overlap Accuracy (AOA) - The ratio of the area of the
region covered by the intersection of P and T to the area
of the region covered by the union of P and T. As an eval-
uation metric, AOA is used in other domains ( e.g. image
segmentation [11]).

o False Negative for area overlap (FNgyreq) - The ratio of the
area of T not covered by P and the area of T.

o False Positive for area overlap (FP4req) - The ratio of the area
of P not part of T and the area of P.

e Point Overlap Accuracy (POA) - The ratio of the number of
points in the intersection region of P and T over the number
of points in the union region.

e False Negative for point overlap (FNpoin:) - The ratio of the
number of points in T which are not covered by P over the
number of points covered by T.

e False Positive for point overlap (FPpoint) - The ratio of the
number of points in P which are not covered by T over the
number of points in P.

PRI I R I
S S &

Methods 9C & E 8 &Q‘ E
Children 68.90 | 29.94 | 1.26 | 97.94 | 2.05 2.0
Center 63.49 | 2591 | 19.68 | 87.65 | 2.02 | 12.32
Children_woOutlier] 92.44 | 3.24 | 4.61 | 97.33 | 2.03 | 2.63
H-enlarge 74.55 | 17.10 | 13.15 | 91.97 | 2.03 7.99
H-scale 75.78 | 16.26 | 13.83 | 92.65 | 2.03 7.31

Table 2: Evaluation result for Geo-50 dataset using US Census
dataset as baseline in (%)

Overall accuracy: The results on Geo-50 (see Tables 2 and 3) show
that children MBR without outliers (children_woOutlier) outper-
forms all other strategies and across both the baselines, namely

s S I S
< 5 s | <« g 3
Methods <OC & E 8 &Q E
Children 68.03 | 29.06 | 3.25 | 97.95 | 2.04 2.0
Center 64.58 | 23.88 | 20.83 | 77.64 | 2.02 | 12.33
Children_woOutlier] 90.80 | 2.49 | 7.05 | 97.34 | 2.02 | 2.63
H-enlarge 76.24 | 14.32 | 13.85 | 91.97 | 2.02 | 8.00
H-scale 76.00 | 15.17 | 14.67 | 92.65 | 2.02 | 7.32

Table 3: Evaluation result for Geo-50 dataset using Google Maps as
baseline in (%)

Google Maps and US Census data. This is mainly due to a large num-
ber of child locations per US state (i.e. 40,210) in Geo-50. This also
shows that gazetteers have a good coverage of developed places.

As shown in Table 4, with a large false positive rate for Geo-

140 and OSM-160, when the area of children MBR is larger than
expected, our probabilistic approach (POM) and hybrid approaches
(H-enlarge and H-scale) perform very well (between 7% to 33%
improvement over Children MBR), accurately excluding outliers
and shrinking the area close to a given area. Our hybrid approaches
also do better when the places do not contain many spatial points
or there is too much uncertainty in data, as shown for Geo-540
and OSM-1500 where hybrid approaches perform the best. This is
because our hybrid approaches construct their MBRs based on the
overlap between center MBR and children MBR, which is expected
to have less uncertainty.
Varying the MBR area and the number of child locations: To
better understand how each method performs under different set-
tings and if one method is better under a more specific setting, we
varied the MBR area and the child count and studied the perfor-
mance of different methods across different testsets. The success
rate of each method is defined as the ratio of the number of in-
stances for which the method gives the best accuracy over total
number of instances in a given area range or child count range. The
success rate of each method on different testsets is shown in Fig. 4
(a) and (b) for different ranges of MBR areas and in Fig. 4 (c) and (d)
for different ranges of child counts.

It can be observed from Fig. 4 (a) that the probabilistic approach
(POM) performs best for places with area greater than 7383.75 km?,
which includes mostly large cities, districts, provinces and small
countries. These places also corresponds to the range of child count
greater than 553 in which our probabilistic approach performs best,
as shown in Fig. 4 (c). On the other hand, for majority of places
with small area or less child count (see Fig. 4 (a), (b), (d)), conflation
techniques such as center MBR and hybrid MBR seem to work well.
Enlargement vs Scaling: In this experiment, we study the effect
of applying uniform scaling and uniform enlargement operations
on the accuracy of hybridMBR. Figure 3 shows the number of
instances in which a particular operation outperforms the other
operation at different administrative levels on Geo-540. One can
observe that the performance of H-enlarge is comparable to that
of H-scale for places at higher administrative levels (e.g. province)
while H-enlarge performs better for places at lower levels in the
spatial hierarchy. This is because H-scale operation extends the
intersection region without changing the shape of the intersection
region greatly. In case of uniform enlargement, the intersection
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Methods <OC & E 8 &Q 5 <OC & E 8 &Q E
Dataset Geo-540 OSM-1500
Children 3420 | 6.27 | 61.68 | 94.49 | 550 | 1.85 | 26.27 | 10.85 | 66.04 | 90.20 | 9.79 2.6
Center 65.39 | 22.71 | 22.23 | 91.73 | 4.29 | 7.49 63.25 | 24.71 | 24.43 | 91.87 4.56 6.76
Children_woOutlier | 34.80 | 5.44 | 61.72 | 94.52 | 5.45 1.86 2597 | 10.83 | 66.37 | 90.20 9.78 2.61
H-enlarge 71.86 | 17.95 | 17.85 | 94.28 | 4.75 | 4.28 | 64.29 | 23.79 | 23.63 | 94.15 | 4.90 4.08
H-scale 63.74 | 24.37 | 25.04 | 94.49 | 4.73 4.06 59.43 | 28.16 | 28.02 | 94.32 491 3.87
Dataset Geo-140 OSM-160
Children 44.43 | 53.66 | 7.02 | 91.32 | 8.67 | 0.71 | 36.33 | 59.86 | 18.85 | 60.99 | 39.0 | 3.75
Center 63.78 | 24.09 | 23.66 | 84.87 | 6.79 | 12.94 | 53.39 | 32.60 | 32.34 | 76.47 | 15.81 | 14.99
POM 78.16 | 9.42 17.29 | 92.89 | 6.79 2.12 4398 | 39.57 | 46.20 | 64.20 | 34.15 | 19.52
Children_woOutlier | 67.12 | 9.30 | 27.95 | 87.10 | 6.44 | 7.56 | 39.76 | 43.79 | 30.82 | 64.51 | 33.96 | 5.43
H—enlarge 72.09 | 17.98 | 17.87 | 89.37 | 6.82 7.89 | 55.33 | 31.03 | 30.98 | 77.41 | 17.18 | 12.18
H-scale 72.16 | 17.96 | 17.85 | 89.98 | 6.85 7.23 55.04 | 31.41 | 31.36 | 77.40 | 17.27 | 11.99

Table 4: Evaluation result for different testsets in (%)

region is equally incremented in both horizontal and vertical di-
rections, and this results in an MBR shape that is close to a square.
This seems to work better for places at a coarser granularity since
it covers the majority of area around the intersection region.
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Figure 3: Success rate of hybrid strategies varying the level of places.

Comparison with MBRs from OSMNames: One benefit of us-
ing OSMNames for our evaluation is that it allow us to compare
the bounding boxes of places in OSMNames with our MBRs, in
reference to MBRs from a third party (i.e. google MBR in our case).
The area overlap accuracy for places in OSM-160 using their bound-
ing boxes from OSMNames gives an accuracy of 31.48% whereas
our geometric approach achieves 55.33% on the same testset; that
means our methods can construct better MBRs than those in OSM-
Names. On OSM-1500, the area overlap accuracy for the bounding
boxes in OSMNames is 66.53%, compared to 64.29% accuracy of our
hybridMBR. This shows that MBRs obtained from our methods are
pretty close to those in OSMNames.

5.2 Effectiveness of an MBR

Effectiveness of an MBR can be measured in terms of its usability
in some of the applications discussed in Section 4.

Gazetteer refinement The dataset used was GeoNames with its
spatial hierarchy constructed using feature class, feature code and
administrative level codes. To generate an MBR for each place, we
extracted the area of places from a public domain site (in our case
Wikipedia Infobox) and used it as input to the strategies discussed
in Section 3. Since the area information was available for a limited
set of places, and not many places did have children, an MBR was
constructed using one of our methods in the given order: (1) the
probabilistic model (POM) was used when the area information
was available and the expected area of the MBR was less than
the children MBR; (2) the geometric model (Center MBR) was used
when the place had no children; (3) the hierarchical model (Children
MBR) was used otherwise. We ended up generating MBRs for 93,274
locations which are also available online®.

To evaluate the refined hierarchy, we obtained two samples of
100 places randomly selected from the list of places processed under
change of parent and restructuring children (as discussed in Section
4.1). For former, we verified whether a place which was identified as
inconsistent was actually inconsistent and for the latter, we verified
whether a location was part of another location. This was done
manually by looking into Wikipedia text and/or Google Maps.

The total number of places identified as wrongly placed under
change of parent was 67,820 while the total number of places moved
deeper in the hierarchy was 2,081,709 (roughly 20% of places in
GeoNames). This shows that in the absence of a geographic scope,
there are many places which are kept directly below the root level.
Furthermore, our evaluation result shows that 91% of places in
our sample (91/100) are moved correctly down the hierarchy. This
provides a strong evidence in support of an accurate restructuring.
For change of parent, the fraction of places which were actually
inconsistent was 3/100; this empirical result shows that the MBRs
are robust enough to support the movement of places deeper in
the hierarchy (i.e. vertical movements) but inconsistent for moving
the nodes across the hierarchy (i.e. horizontal movements). The
children places identified as wrongly placed were often streams,

Shttps://goo.gl/WxcbMG
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Figure 4: Success rate of the methods varying the area of MBR of the places in (a) and (b) and varying child count in (c) and (d).

forests or places which lied near the geographical boundary of a
parent. This is mainly due to the vague geographic scope of natural
landscapes and mis-alignments of child MBRs, which does not allow
an MBR to fall completely under a parent node.

Gazetteer enrichment via geotagging The dataset used for this
experiment consisted of 4,631,717 photos/videos for training and
500,000 photos/videos for testing. This dataset which was provided
in ‘Placing task’® was extracted by organizers from the YFCC100M
corpus (see [9] for details). Our preprocessing of this data included
removing stopwords (as detected by Weka 7) as well as tags that
contained special characters and doing a stemming using Snowball
[21] stemmer. As a baseline for comparison with our MBR-based
approach, we also divided the surface of earth into cells of size 0.3
degree latitude and longitude. The training instances were then
mapped to the MBRs (generated in Section 5.2 under gazetteer en-
richment) and cells independently which gave 52,294 MBRs and
44,926 cells with at least one photo or video. The reason for generat-
ing cells of size 0.3 degree was to keep the number of cells relatively
close to the number of MBRs; otherwise a method with fewer cells
or MBRs is expected to perform better in MBR prediction with less
chance of making an error. The ground truth (i.e. geo-coordinates
for test photos and videos) was provided in the dataset.

The prediction accuracy is measured in terms of the Average
Distance Error (ADE), calculated as the mean Haversine distance
[24] between predicted and true coordinates over all photos and
videos. We also measured the prediction accuracy for MBRs (and
similarly for cells) defined as the ratio of the number of instances
for which a predicted MBR (cell) is the same as the true MBR (cell)
to the total number of instances in the testset.

Our experiment gives an ADE of 2561.114 km for MBRs com-
pared to 3039.674 km for cells, with a prediction accuracy of 41.23%
for MBRs and 32.37% for cells. This clearly shows that geo-tagging
using MBRs is more accurate than a grid-based approach. The anal-
ysis of the results show two major reasons for a wrong prediction
of MBR or cell, which leads to a large distance error; (1) There are
several instances of photos or videos in the testset, which mention
some general terms only (e.g. ‘affect’, ‘ipad’) and they do not carry
any location-specific information. These tags can occur anywhere
on the world map and it is difficult to predict a location for them.

Shttp://www.multimediaeval.org/mediaeval2016/placing
http://weka.sourceforge.net/doc.dev/weka/core/Stopwords.html

(2) There are cells and MBRs which are sparsely populated, i.e. they
have very few users assigned (usually 1 or 2). As a result, even
though there are several dense MBRs or cells (with the number of
users of order 10°) containing multiple tags of a test instance, a
sparsely populated cell or MBR is predicted as best cell or MBR
for the test instance. Also, such cases are seen more often for cells
which are created randomly without any knowledge of geographi-
cal scope of the locations.

6 CONCLUSIONS AND FUTURE WORK

We studied different strategies for building the bounding boxes of
places using the spatial hierarchy of a gazetteer and information
such as the area of places, which are available in public domains. Our
extensive evaluation on various datasets and settings show that an
accurate bounding box can be constructed and that these bounding
boxes can improve other applications that use a gazetteer. Also,
while our POM-based approach works best for places at district,
provinces or higher level, our geometric and heuristic approaches
can be employed for places without enough coverage in a gazetteer.

Our work can be extended in a few directions, and we are explor-
ing some of those directions. First, one can integrate the proposed
strategies into a single model that is invariant to parameters such
as the number of child locations, the distribution of points, etc. Sec-
ond, the local features of a region such as landscape of places in a
close proximity, population density, etc. can be used to improve the
accuracy of boundary boxes. Third, a limitation of our probabilistic
model is that it is not applicable when the area of a children MBR
is smaller than a given area. Also our optimization in Section 3.3.2
makes use of the uncertainty of events that are observed on our
gazetteers; relaxing those assumptions can make the optimization
more challenging. Fourth, our heuristic approach, which removes
the outliers, does not work well when the center of a place is away
from its child locations; this is another area for further research.
Finally, exploring other applications of a gazetteer enriched with
MBRs is also a possible future direction.

ACKNOWLEDGMENTS

This research is supported by the Natural Sciences and Engineering
Research Council of Canada.


http://www.multimediaeval.org/mediaeval2016/placing

REFERENCES

(1]

[2

[

(8]

[9

[10]
[11]

[12]

(13

[14]

[17]

[18

[19]

[20

)
N =

[23]

[24

[25]

[26]

[27

[28]

Dirk Ahlers. 2013. Assessment of the accuracy of GeoNames gazetteer data.
In Proceedings of the 7th Workshop on Geographic Information Retrieval. ACM,
74-81.

Harith Alani, Christopher B Jones, and Douglas Tudhope. 2001. Voronoi-based
region approximation for geographical information retrieval with gazetteers.
International Journal of Geographical Information Science 15, 4 (2001), 287-306.
Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: an efficient and robust access method for points and rectangles.
In ACM Sigmod Record, Vol. 19. Acm, 322-331.

Jens Bleiholder and Felix Naumann. 2009. Data fusion. ACM Computing Surveys
(CSUR) 41, 1 (2009), 1.

Volha Bryl and Christian Bizer. 2014. Learning conflict resolution strategies for
cross-language wikipedia data fusion. In Proceedings of the 23rd International
Conference on World Wide Web. ACM, 1129-1134.

Claudio Elizio Calazans Campelo and Claudio de Souza Baptista. 2008. Geo-
graphic scope modeling for web documents. In Proceedings of the 2nd international
workshop on Geographic information retrieval. ACM, 11-18.

Claudio Campelo and Claudio de Souza Baptista. 2009. A model for geographic
knowledge extraction on web documents. Advances in Conceptual Modeling-
Challenging Perspectives (2009), 317-326.

Jiaoli Chen and Shih-Lung Shaw. 2016. Representing the Spatial Extent of Places
Based on Flickr Photos with a Representativeness-Weighted Kernel Density Esti-
mation. In International Conference on Geographic Information Science. Springer,
130-144.

Jaeyoung Choi, Claudia Hauff, Olivier Van Laere, and Bart Thomee. 2016. The
Placing Task at MediaEval 2016. MediaEval 2016 Workshop (Oct. 20-21 2016).
Xin Luna Dong and Felix Naumann. 2009. Data fusion: resolving data conflicts
for integration. Proceedings of the VLDB Endowment 2, 2 (2009), 1654-1655.

Jan Funke, Fred A Hamprecht, and Chong Zhang. 2015. Learning to segment:
training hierarchical segmentation under a topological loss. In International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, 268-275.

Maurizio Gibin, Alex Singleton, Richard Milton, Pablo Mateos, and Paul Longley.
2008. An exploratory cartographic visualisation of London through the Google
Maps APL Applied Spatial Analysis and Policy 1, 2 (2008), 85-97.

Victoria Hodge and Jim Austin. 2004. A survey of outlier detection methodologies.
Artificial intelligence review 22, 2 (2004), 85-126.

Livia Hollenstein and Ross Purves. 2012. Exploring place through user-generated
content: Using Flickr tags to describe city cores. Journal of Spatial Information
Science 2010, 1 (2012), 21-48.

Ehsan Kamalloo and Davood Rafiei. 2018. A coherent unsupervised model for
toponym resolution. In Proceedings of the Web (former WWW) Conference. ACM.
https://doi.org/10.1145/3178876.3186027

Giorgos Kordopatis-Zilos, Symeon Papadopoulos, and Yiannis Kompatsiaris. 2015.
Geotagging social media content with a refined language modelling approach. In
Pacific-Asia Workshop on Intelligence and Security Informatics. Springer, 21-40.
Weimo Liu, Md Farhadur Rahman, Saravanan Thirumuruganathan, Nan Zhang,
and Gautam Das. 2015. Aggregate estimations over location based services.
Proceedings of the VLDB Endowment 8, 12 (2015), 1334-1345.

Maxwell Guimaries de Oliveira, Claudio EC Campelo, Claudio de Souza Baptista,
and Michela Bertolotto. 2016. Gazetteer enrichment for addressing urban areas:
a case study. Journal of Location Based Services 10, 2 (2016), 142-159.

Jonathon K Parker and Joni A Downs. 2013. Footprint generation using fuzzy-
neighborhood clustering. Geoinformatica 17, 2 (2013), 285-299.

Adrian Popescu, Gregory Grefenstette, and Pierre Alain Moéllic. 2008. Gazetiki:
automatic creation of a geographical gazetteer. In Proceedings of the 8th ACM/IEEE-
CS joint conference on Digital libraries. ACM, 85-93.

Martin F Porter. 2001. Snowball: A language for stemming algorithms. (2001).
Rosanne Price, Nectaria Tryfona, and Christian S Jensen. 2001. Modeling topo-
logical constraints in spatial part-whole relationships. In International Conference
on Conceptual Modeling. Springer, 27-40.

Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J Miller, and Divesh
Srivastava. 2015. Combining quantitative and logical data cleaning. Proceedings
of the VLDB Endowment 9, 4 (2015), 300-311.

C Carl Robusto. 1957. The cosine-haversine formula. The American Mathematical
Monthly 64, 1 (1957), 38-40.

Peter J Rousseeuw, Ida Ruts, and John W Tukey. 1999. The bagplot: a bivariate
boxplot. The American Statistician 53, 4 (1999), 382-387.

Pavel Serdyukov, Vanessa Murdock, and Roelof Van Zwol. 2009. Placing flickr
photos on a map. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval. ACM, 484-491.

Sanket Singh and Davood Rafiei. 2016. Geotagging Flickr Photos And Videos
Using Language Models, In MediaEval 2016 Working Notes Proceedings. Available
from World Wide Web: http://slim-sig.irisa.fr/mel6proc/.

Maria ] Somodevilla and Fred E Petry. 2004. Fuzzy minimum bounding rectangles.
In Spatio-Temporal Databases. Springer, 237-263.

(31]

(32]

Kurt Stiiwe. 2007. Geodynamics of the lithosphere: An introduction. Springer
Science & Business Media.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni,
Douglas Poland, Damian Borth, and Li-Jia Li. 2016. Yfcc100m: The new data in
multimedia research. Commun. ACM 59, 2 (2016), 64-73.

Mark Wick and Bernard Vatant. 2012. The geonames geographical database.
Available from World Wide Web: http://geonames. org (2012).

David F Williamson, Robert A Parker, and Juliette S Kendrick. 1989. The box
plot: a simple visual method to interpret data. Annals of internal medicine 110, 11
(1989), 916-921.

[33] Jiangwei Yu and Davood Rafiei. 2016. Geotagging Named Entities in News and

(34]

(35]

Online Documents. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 1321-1330.

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Transactions on Information
Systems (TOIS) 22, 2 (2004), 179-214.

Wei Zhang and Judith Gelernter. 2014. Geocoding location expressions in Twitter
messages: A preference learning method. Journal of Spatial Information Science
2014, 9 (2014), 37-70.


https://doi.org/10.1145/3178876.3186027

	Abstract
	1 Introduction
	2 Related Work
	3 Geographical Scoping
	3.1 Hierarchical Approach
	3.2 Geometric Approach
	3.3 Probabilistic Approach
	3.4 Heuristic Approaches

	4 Improving a gazetteer
	4.1 Gazetteer Refinement
	4.2 Gazetteer Enrichment via Geotagging
	4.3 Enforcing topological constraints

	5 Experimental Evaluation
	5.1 Accuracy of an MBR
	5.2 Effectiveness of an MBR

	6 Conclusions and Future Work
	Acknowledgments
	References

