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ABSTRACT

Result diversity is a topic of great importance as more facets
of queries are discovered and users expect to find their de-
sired facets in the first page of the results. However, the
underlying questions of how ‘diversity’ interplays with ‘qual-
ity’ and when preference should be given to one or both are
not well-understood. In this work, we model the problem as
expectation maximization and study the challenges of esti-
mating the model parameters and reaching an equilibrium.
One model parameter, for example, is correlations between
pages which we estimate using textual contents of pages
and click data (when available). We conduct experiments
on diversifying randomly selected queries from a query log
and the queries chosen from the disambiguation topics of
Wikipedia. Our algorithm improves upon Google in terms
of the diversity of random queries, retrieving 14% to 38%
more aspects of queries in top 5, while maintaining a preci-
sion very close to Google. On a more selective set of queries
that are expected to benefit from diversification, our algo-
rithm improves upon Google in terms of precision and di-
versity of the results, and significantly outperforms another
baseline system for result diversification.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms

Algorithms, Theory, Experimentation, Measurement

Keywords
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1. INTRODUCTION

With everyday increases to the size of the World Wide
Web and the potential matches of queries, selecting “best”
matches for the top few slots of a result page is becoming
more constrained. At the same time, users expect to find
their relevant matches in the first page (if not in top 5 or 3),
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but as the diversity of users increases, so does their needs
whereas the number of slots in the first page remains fixed.
To have a better understanding of the challenges, consider
the following scenarios.

EXAMPLE 1. Consider a scenario where the result set
{A,B,C,D,E,F,G,H,1,J} is retrieved, and the query is
likely to be posed by one of four hypothetical users. Suppose
one such user (if posed the query) would find A and D relevant
to his/her search; the second user would find G and H and the
third user would find A and E relevant to their searches. The
fourth user would find no relevant document in the returned
set. An interesting question is as both the number of likely
users and the size of the result set increases, what is the best
strategy for ordering the results such that many users would
find their relevant pages in the top few slots.

The problem is often more complex, and the search expe-
riences of users generally vary depending on where relevant
documents are shown in result pages. In particular, results
are often browsed from top to bottom, and it requires less
effort to find a relevant document, for instance, in position
one, compared to other positions. Also given an ordering,
the more users find their relevant documents in top posi-
tions, the better score should be given to the ordering. In
other words, the overall search performance depends on both
the number of users and the quality of the search experience
of each user.

ExXaMPLE 2. Consider the result set in Ezxample 1 but
suppose this time a reward is paid when relevant documents
are retrieved. Let the amount of payoff be proportional to the
reciprocal ranks of the relevant documents, i.e. the payoff at
rank i is 1/i if the document is relevant and 0 otherwise.
Suppose the payoff for a result ordering is the mean payoff
for all relevant documents. For instance, if only the first and
the fourth documents are relevant to a particular search, the
mean payoff would be ($1.00 + $0.25)/2 = $0.62. Now con-
sider a search scenario where in 45% of the cases {A, D}
is relevant, in 12% of the cases {G,H} is relevant, in 1% of
the cases {A, E} is relevant and in the remaining 42% of
the cases, none of the documents are relevant. Table 1 gives
both the payoff and the weighted payoff when the results are
ordered from A to J. Under the given workload, the mean
payoff is estimated to be $0.31 for the given ordering.

In real settings, typically very little is known about a large
class of queries in advance. According to some estimates,
about 60% of search engines queries are new [16]. In cases
where the queries are known, it is also generally difficult to
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Table 1: Example scenario

identify in advance which subsets of the results would be
relevant to which classes of searches and the frequency of
searches in each class. Hence workloads and query classes
are rarely known in advance. In this paper, we base our
analysis on click-through rate estimates and statistics about
search results, mainly because click-through rates, unlike
user workload and query statistics, can be estimated with
a good accuracy (e.g. [15]). If clicks are treated as votes
for relevance, the mean and the standard deviation of this
relevance can be estimated; this leads to further statistics
about a result set or any subset of the result set.

As our contribution, we formalize the problem of diversify-
ing search results and propose solutions to address it. More
specifically, we cast the problem as an optimization task
and present algorithms to estimate the optimization param-
eters. We report on the feasibility and the accuracy of our
estimations using various data sources. We further conduct
experiments using queries from different sources, including
Wikipedia pages [19] and search engine logs, and report the
effectiveness of our algorithm in diversifying Google search
results. Our approach fits within the general risk minimiza-
tion framework of Zhai and Lafferty [21] in that a risk func-
tion is minimized and a variable capturing user behaviour is
introduced. Our work focuses on one particular loss function
which is the variance of relevances.

The rest of the paper is organized as follows. In the next
section, we formalize the problem and our approach to di-
versifying search results. The presented model has a few
input parameters; Section 3 presents a few algorithms for
estimating these parameters. Section 4 presents our experi-
mental evaluation of the work. Related works are discussed
in Section 5 and Section 6 concludes the paper.

2. PORTFOLIO MODEL OF SEARCH

Let S be a result set and Qs be a set of searches for
which S is retrieved. Our notion of a search here includes
all query aspects including spatial, temporal and lexical fea-
tures. Hence all searches are considered unique, meaning the
same query expression issued by different users or even the
same user at different times are considered different mainly
because the relevant result sets can be different (e.g. the
desired result for “Michael Jordan” can be in one search the
NBA player and in another search the U. Berkeley Prof.).
The problem of result diversification informally can be de-
scribed as finding a set S’ C S such that S’ includes relevant

documents for as many queries as possible in QQs. Naturally
result diversification is meaningful when S is too large to be
fully browsed. We would refer to set S’ as a portfolio. In
real settings, we may have some constraints on relatedness,
diversity or the size of S’ based on page layout and statistics
on the number of pages browsed or clicked per query.

Let z, be a random variable indicating the relevance of
document u to queries in QQs. Suppose z, takes values
in the range [0,1]. Denote the expectation and the vari-
ance of z, respectively by E(z,) and 02(z,). Now let Z =
[21,22,...,2:]7 be a vector of random variables indicating
the relevance of the documents in S, as just described, where
n = |S|. Denote the correlation between two variables z; and
z; by pi; and form the covariance matrix of the variables as-
sociated to the result set S. The covariance matrix is sym-
metric with entry at row ¢ and column j set to o(z;)o(z;)ps;.

More formally, let’s indicate the inclusion of pages in a
portfolio with a weight vector W = [w1,..., w,]T where
0 <wy <1lfori=1,...,nand >, ,w; = 1. Given a
weight vector W, the expected relevance of the portfolio
to queries is W7T E(Z) and the variance is WTCW where
C is the covariance matrix of the result set *. It should
be noted that the expectation here gives the precision of
the results, averaged over queries in (g, and the variance
indicates the degree of dispersion or variation in precision
between queries.

DEFINITION 1. A portfolio is diversified if its expectation
is relatively high and its variance is relatively low.

This is a natural and intuitive definition of result diversity.
Given the uncertainty around queries and the intentions of
users posing them, we not only want to increase the average
relevance or expectation of a portfolio but also want to re-
duce the variations on relevance between potential searches
for which the portfolio may be returned. With this defini-
tion, consider two portfolios W1 and Ws and suppose Wi has
the same expectation as W2 but a smaller variance. There
are two possible cases where Wi can have a smaller vari-
ance. First, variables in Z with large (small) variances may
have overall smaller (larger) weights in W7 compared to Wa;
this combined with the fact that W and W5 have the same
expectations would indicate that Wi overall prefers docu-
ments that are relevant to a larger number of queries over
those that are relevant to only a few; hence Wi is more di-
verse. Second, variables in Z can have correlations and Wi
may give less weight to correlated variables than W5 which
can result in a smaller variance for W;. This would in turn
indicate that Wi prefers less correlated and more diverse
results. On the other hand, diversity is meaningful if the
results are relevant or the expectation is not low.

2.1 Search Optimization

A search for a diversified result set can be modeled as
an optimization problem where a portfolio is sought such
that the portfolio variance is minimized while the expected
relevance is fixed at a certain level e, i.e.
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min §W cw (1)
subject to
WTE(Z)=e,WT1=1 (2)

!Throughout this paper, we assume W is a column vector
and its transpose W7 is a row vector.



where W consists of all non-negative weights 2. Suppose
E(Z) and 1 are linearly independent; if not, one of the con-
straints must be redundant and can be eliminated before
solving the equation. For vector W™ to be a solution of
Eq. 1 and 2, the necessary first-order condition is

CW* = XNE(Z)—+"1=0 (3)
EZ)"W*=e1"W* =1 (4)

where A* and v* are scalers (referred to as Lagrange multi-
pliers).

2.1.1 Unigueness of solution

To show the uniqueness of solution for our optimization,
we first eliminate the constraints. If we denote [E(Z) 1]7
and [e 1]7 respectively by A and b, then the equality con-
straints in Eq. 2 can be written as AW = b. A general
approach for reducing this constraint is to choose Y € R™*2
and V € R™* ("~ guch that AV = 0 and AY is invertible 3,
and rewrite W as

W =Y(AY) b+ V.. (5)

Further details on finding Y and V' can be found elsewhere
(e.g. see [8]). It is easy to see that with the setting in
Eq. 5, the constraint AW = b holds for all values of z,,, and
that the optimization problem in Eq. 1 can be equivalently
expressed as an unconstrained problem after replacing W
with its equivalent expression in Eq. 5.

DEFINITION 2. A square matriz M € R™ "™ is positive
definite if XTMX > 0 for all X € R™, and positive semi-
definite if XTMX > 0.

Equivalently, M is positive definite if and only if all of the
eigenvalues are positive, and M is invertible if and only if
all of the eigenvalues are non-zero (see, for example, [3]).
Clearly a positive definite matrix is always invertible.

THEOREM 1. If VI CV is positive definite, then there is
a unique (W™, X* 4*) satisfying the conditions of Eq. 4 and
W™ is the unique global solution of Eq. 1 and 2.

ProOOF. This is the direct consequence of Lemma 16.1
and Theorem 16.2 of Nocedal and Wright [12]. [

LEMMA 1. Let C be a covariance matrix and AV = 0;
VTCV is positive definite if no component of W is a linear
function of other components.

PROOF. The covariance matrix C' is always positive semi-
definite, i.e. XTCX > 0 for all non-zero vectors X; oth-
erwise the variance would be negative. Suppose there is a
non-zero vector p such that p? Cp = 0. Consider the random
variable pW7 = [p1Wa,...,paWal;

o*(pW7") = (p" Cp) = 0.

This means pW 7 = b for some constant b. Since p is non-
zero, at least one component of p say p; must be non-zero.
That means we can write Wi as a linear function of other

2 Alternatively, one may fix the variance and maximize the
expectation; because of the uniqueness of a solution (as
shown next), for a fixed variance, the problem has a unique
expectation and vice versa.

3A matrix A € R™*" is invertible if there exists A~ €
R™ ™ gsuch that AA~! = I where I is the m x m identity
matrix.

components of W, and this contradicts our assumption that
no component of W is a linear function of other compo-
nents. [

With the replacement of variables in Eq. 5, the preconditions
of Lemma 1 and Theorem 1 hold, hence the uniqueness of
an optimal solution is guaranteed. Our experiments with
hundreds of thousands of queries, as discussed in Section 4,
also confirmed that a unique solution is always reachable.
Next section presents our methods for estimating the model
parameters including E(Z) and C.

3. ESTIMATING THE MODEL PARAME-
TERS

The optimization model, as presented in Section 2.1, has a
few input parameters. Given a query and a set of matching
documents, the relevance expectation for all matching doc-
uments, i.e. E(Z), would have to be estimated before eval-
uating the expectation in Eq. 2. Furthermore, to construct
the covariance matrix (in turn used in Eq. 1), the variance
of relevances on each result document, and the pairwise cor-
relations between relevances of result documents have to be
evaluated. The data in our disposal for estimation is (a)
click data which may be treated as votes for relevance, and
(b) document content.

3.1 Correlations between pages

Consider the set of matching pages of a query, and let p
and g be two arbitrary pages in the result set. We call p and
q positively correlated if there is evidence that whenever p is
relevant to a search, then ¢ is also likely to be relevant and
vice versa. Correlation statistics is important in optimizing
search results, as evidenced in our formulation discussed in
the previous section; but estimating correlation can be chal-
lenging mainly because relatedness and relevance are often
subjective and may depend on queries. For example, daim-
ler.com and toyota.com are related with respect to query
“car makers” but not so related with respect to queries “ger-
man car makers” and “japan manufacturers”.

One approach for estimating correlation is based on past
search data; if two pages are frequently retrieved or clicked
for the same query, it is likely that they would be retrieved
or co-clicked in future. A problem though is that this data
is very sparse. A large fraction of pages are never clicked or
retrieved. Even at the site level, the data is still too sparse.
In our experiment with 21 million lines of the AOL query
log [13], the number of sites that were co-clicked was less
than 9 million. After removing the pairs with frequency two
or less and also those with confidence * less than 0.10, the
number was dropped to 9700 pairs. This level of confidence
was relatively low, but even at this level and with 1.2 million
unique sites in the log, the chance of finding an estimate for
an arbitrary pair was less than 0.00000001.

Another approach for estimating correlation is to use the
textual contents of pages; if two documents are similar in
their textual contents and one is relevant to a query, the
other is also likely to be relevant. On the same basis, a
large body of work in the IR community has studied differ-
ent metrics for finding similar documents (e.g. [2]). As an

For a pair s; and sy of frequencies respectively
f(s1) and f(s2) and the joint frequency f(s1,s2),
confidence(s1,52)=f(s1,s2)/max(f(s1),f(s2)).



argument against applying this idea to Web pages, consider
an obscure Web page that imitates a very well-known page
and scores the highest degree of textual similarity. Hence
textual similarity alone is not sufficient to establish relat-
edness. However, this is less of an issue in our case since
correlation is only sought between pages that are retrieved
(for a query) and generally obscure and low-quality pages
have less chance of making it to a result set. Even if a low
quality page makes to the result set, with a strong correla-
tion between the two (high quality and a low quality) pages,
the low quality page has less chance of making to the port-
folio.

To further reduce noise and to keep the number of false
correlations within some bound, we use a more salient set of
features to indicate if pages refer to the same set of concepts
and entities. Our set of features, in particular, included en-
tities, numbers, query extensions and site names. Entities
are identified using a simple heuristic that looks for capi-
talized terms and phrases in sentences. Query extensions
are terms and phrases that appear in result pages and ex-
tend query terms. For example, ‘city of palo alto’, ‘palo
alto chamber of commerce’ and ’palo alto restaurants’ are
all extensions of the query ’palo alto’. Query extensions are
important for queries with multiple aspects, and may corre-
late pages on each aspect. Numbers are included since they
give quantities such as phone number, zip code, year, height
and weight; these quantities may relate pages that discuss
the same entities or concepts. Extracted entities, query ex-
tensions and numbers were weighted based on their Inverse
Document Frequencies ° (IDF). Finally site names are also
included based on the observation that pages on the same
site are generally related. In fact, some search engines limit
the number of pages from the same site (so-called site col-
lapsing) as an attempt toward diversifying the results. This
observation does not hold for large portals that host millions
of pages such as yahoo.com. We deal with this problem by
assigning a weight to each site which is inversely propor-
tional to the number of pages on the site (similar to IDF
weighting).

Consider two Web pages p and ¢ in a document collection
and denote their set of common features with F. If P(f) de-
note the probability of observing feature f in an arbitrarily
chosen document in the collection, and assuming indepen-
dence of the features in F', the probability that feature set F’
(say of p) is found in an arbitrarily chosen document (includ-
ing q) by chance is IIfcpP(f). The larger this probability
is, the smaller the correlation between p and ¢ should be. Of
course, correlation is bounded from upward to 1, and when p
and g are independent, the correlation should be zero. Based
on these observations, the correlation between p and g can
be expressed as:

Cpq) :{ gl/e)(*log(ﬂfeFP(f))) ;lif;g(HfEFP(f)) e

where € is a threshold, in our case, set to —log(1/N) and N
is the number of documents in the collection; this setting in-
dicates the point where the expectation of ;e P(f) drops
to one. The log function can be pushed in giving an equiv-
alent expression for correlation as the (normalized) sum of

Sidf(t) = —logf(t)/N where f(t) is the number of docu-
ments that has ¢ and N is the number of documents in the
collection.

i E(Nja) Var(N;)
1 0.3075 0.2073
2 0.0792 0.0642
3 0.0522 0.0416
4 0.0343  0.0265
5 0.0258  0.0194
6 0.0198  0.0145
7 0.0159  0.0114
8 0.0135 0.0095
9 0.0124  0.0086
10 0.0129  0.0089
11 0.0023 0.0014
12 0.0018 0.0011

Table 2: Position payoff

the idf values for features in F.

Otpa) = { (/I Eser TP Eyer loa(P(f) <<
(©

3.2 Relevance expectation and variance

Consider a result set S and let u be a document in S. If
Z, denote the relevance (or payoff) of u to queries in Qs,
we want to estimate the expectation and the variance of Z,.
Assuming that the distribution of Z, doesn’t change much
over time (e.g. Michael Jordan’s NBA page remains rele-
vant to more queries than the Berkeley Prof’s home page),
its expectation and variance can be estimated based on past
queries. In particular, our estimation is based on the obser-
vation that the relevance of a document to a query is directly
related to the number of clicks the document is expected to
receive. Generally not all clicks are equally important; espe-
cially more relevant pages are likely to be clicked first. Also
long clicks, where more time is spent on a page, may be con-
sidered more important than short ones. Hence query clicks
may be ordered, and each click may be assigned a payoff
proportional to its rank. Without loss of generality, suppose
the amount of payoff is set to the reciprocal rank of a click.
If the random variable Z,; denote the payoff for document
u at position j, then

7 1/i  wrl u at position j receives the ith click
“WT1 0 else.

Similarly, the payoff at position j, denoted by N;, can be
written as

N — 1/i  position j receives the ith click
7710 else.

Table 2 gives the expectation and variance of this payoff for
top 12 positions, as estimated from the AOL search log data
[13]. On the other hand, Z,; directly depends on both Nj,
and the bias introduced by presenting u at position j. If
random variable X, denote this bias toward u, Z,; can be
expressed as

Zuj - Nj + Xu. (7)

Here X, = Z.; — N; gives the difference in payoff between
the case where u is present at position j and the case where
w is not. X, can be estimated for each u based on estimates
of Z,; and N;. It should be noted that in real settings
Z.; may also correlate (either positively or negatively) with



Z,1 5 for pages u' shown at positions j < j; this correlation
is not easy to estimate and is not taken into account in our
formulation. The expectation and the variance of Z,; can
be expressed as

E(Zu;) = E(N;) + E(Xu),
0%(Zuj) = 0°(N;) + 0 (X.) 4+ 2Cov(N;, X) (8)

where the last term in the expression of variance gives the
covariance of N; and X, and is zero when N; and X, are in-
dependent. The expectation and the variance of N; and X,
can be estimated in advance of queries and can be plugged
in Eq. 8 at query time to derive estimates of the expectation
and variance of Z,;. As shown in Figure 1-a for sites in the
AOL log data , the bias for 80% of the sites is either zero or
-0.05 and for the remaining 20% of the sites it is distributed
in the range from 0.05 to 0.7.

Our formulation of bias in Eq. 7 assumes that X, is in-
dependent of the position, hence it gives the average bias
over all positions where u appears. A breakdown of bias
over positions, as shown in Figure 1-b for the AOL log data,
reveals that X, is not uniformly distributed over all posi-
tions, and rather it has a direct relationship to the positions
where u appears. With the sparsity of data however, it is
difficult to estimate the bias for each site and each position;
there is little click data on many URLs, and the URLs that
are clicked hardly appear in more than very few positions.
To address the problem of sparsity, we use the distribution
of bias over positions, estimated over all sites, to obtain an
estimate of bias for a specific site on a specific position. In
particular, given a site u and position ¢, assuming that the
bias toward u at position ¢ does not differ much from the
bias distribution of other sites at the same location, X, can
be scaled according to the distribution, giving a more ac-
curate estimate at position i. As shown in Figure 1-b for
E(X,), the scaling ratio gets close to zero for ¢ > 10.

3.3 Target expectation

One last parameter to our search optimization is a target
level of expectation as denoted by e in Eq. 2. Assuming that
the expected values of relevance or clicks per page are in the
range [0, 1], the target expectation is also constrained to the
range [0, 1]. If we denote the greatest expectation of a result
set S by emax(S), the target expectation for S also cannot
exceed emaz(S). For the boundary values, Eq. 1 has trivial
solutions; more specifically when € = €mq4(S), an optimal
portfolio includes only the document(s) with the greatest
expectation(s), and for e = 0, an optimal portfolio includes
no document.

DEFINITION 3. For a given result set S, relevance esti-
mates are mean-variance efficient if for any pair Z.; and
Zyoj whereu,v € S, B(Zu;) > E(Zv;) iff 0%(Zus) > 02(Zy;).

Mean-variance efficiency is expected to hold under natural
settings of search engines; an efficient engine is expected to
push URLs with high expectations up in the ranking until
an equilibrium is reached between the expectations and the
variances.

THEOREM 2. Assuming mean-variance efficiency of the
individual estimates Zyj, variance of an optimal portfolio is
a monotonically increasing function of e.

5Note that this dataset only has information about clicks;
it is assumed that all sites have the same chance of being
shown.

e portfolio size

relative  absolute (mean) | mean var
MT(2)  0.38 230 183
MT(3)  0.29 301 2.02
MT(5)  0.20 361 211
MT(10) 0.12 320 2.02

Table 3: Portfolio size varying the target expecta-
tion

PROOF. Suppose the result set includes a document do
with both expectation and variance zero; this can be, for
example a document which is never shown hence it cannot
receive a click. Denote the random variable indicating the
relevance of dp by Zp. Consider target expectations e; and ez
where e; > ez and let W; and W> be the respective optimal
portfolios. As a contradiction, suppose o?(W1) < o?(Wa).
Let € = (e1 — e2)/n for some positive integer n. Construct
portfolio Wi’ as follows: first set Wi’ = Wi, then iteratively
select a document d; with expectation greater than €; denote
the random variable indicating the relevance of d; by Z;.
Reduce the associated weight w; in W1’ by €¢/E(Z;) and add
¢/E(Z;) to the weight of dy (to keep the norm of the weight
vector 1). Repeat the iterative step until E(W;") = ez. Since
initially E(W1') = e1 and e1 > ez, after n iterations (for
an appropriate n) the termination condition would become
true. With the new W1’ and because of the mean-variance
efficiency of estimates for individual documents, o%(W;") <
a*(W1). We also have o%(W1) < o?(Wa), hence o?(W1') <
0%(W>). But this is a contradiction since Wa is an optimal
portfolio for the target expectation ez; this completes the
proof. [

With a monotonic relationship, setting a target expecta-
tion is not straightforward since a higher expectation would
also mean a higher variance. To find a trade-off, we further
studied the portfolio size as the target expectation varied.
Given statistics on the browsing behaviour of users and the
fact that the vast majority of users only browse a few top-
ranked results, it is reasonable to keep the portfolio size
small. Although the size of a portfolio cannot be set di-
rectly, our experiments show that the portfolio size to some
degree is a by-product of the target expectation. Table 3
shows mean portfolio size for 10,000 queries randomly se-
lected from Google query log as the target expectation varies
from MT(2) to MT(10) where MT(i) denotes the mean of
top i expectations in a result set. The optimal portfolio
size increases as the target expectation e decreases until it
reaches MT'(5) after which there is a reduction in size. This
is not surprising given that when e = 0, the optimal port-
folio size is O (as discussed earlier). Examining the changes
in optimal portfolios as e increases reveals that for smaller
values of e the changes are in the form of including addi-
tional documents in the portfolio, whereas for larger values
of e the changes are in the form of both additions and sub-
stitutions. Table 4 shows these changes for the same set of
random queries. The changes to optimal portfolios are over-
all small, indicating the robustness of the portfolio selection
to changes in e.

4. EXPERIMENTS

This section provides a preliminary evaluation of our search
optimization and diversified results.
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Figure 1: a) Bias distribution, and b) Bias breakdown over positions

insertions del./sub.

mean var | mean var
MT(3) vs MT(2) | 0.66 062|010 0.11
MT(5) vs MT(3) | 0.73 070 | 028  0.29
MT(10) vs MT(5) | 0.38 085 | 1.10  1.28

Table 4: Portfolio changes

4.1 Setup

We implemented our search optimization algorithm, as
discussed in Sec. 2.1, in a tool called Diver that offered
functionalities for searching and diversifying the results. For
solving the quadratic programming optimization in our al-
gorithm, we used Gertz’s and Wright’s OOQP [9] and it
turned out to be fast (see Sec. 4.5 for details). Diver used
Google search, and for each query, up to 500 top results
from Google were retrieved and reranked to improve diver-
sity. Correlations between pages were estimated based on
textual features as discussed in Section 3 and the relevance
statistics were estimated as in Eq. 8. X, was calculated at
the site level and was the same for all pages on the same site,
except that its was weighted for each page according to its
rank in the result (as shown in Figure 1-b). The parameter
e in Eq. 2 was set to the mean of the best five expecta-
tions, i.e. MT(5), hence it was query- and result- specific
(see Section 3.3 for details on the choice of e).

For evaluation, top five results from Diver were compared
to those from Google in terms of result relevance and the
number of different query aspects retrieved. For Diver, top
five results included those that received the highest weights
in the optimal portfolios derived using the optimization in
Eq. 1; if there were less than five results in the portfolio,
the rest of the results were selected from those outside the
optimal portfolio but with the largest Google ranks.

4.2 Wikipedia disambiguation pages

To measure the improvement in the number of different
query aspects retrieved, we selected 50 disambiguation pages
from Wikipedia and used the titles of these pages as queries
in both Diver and Google. The disambiguation pages were
identified using the query site:en.wikipedia.org “may re-

50 Wikipedia disambiguation topics
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Figure 2: Unique aspects retrieved for Wikipedia
queries

fer to” disambiguation at Google and after removing top-
ics with either less than 3 or more than 15 different aspects.
We ensured that the selected topics were real queries tried
in the past by checking their frequencies in a small query
log. All queries appeared at least once; some appeared more
than 4000 times. Returned results from the two systems
were passed to evaluators who were asked to assign each
document in the result to its closest matching sub-topic in
Wikipedia; when there was no matching sub-topic, the eval-
uators could create their own. Finally the systems were
assessed based on the number of different aspects retrieved
in top r. Figure 2 shows this result with r varying from 1
to 5. Google does a relatively good job retrieving multiple
query aspects and Diver slightly improves upon Google.
We found limitations in using the disambiguation pages
to evaluate diversity. First, there are many obsolete aspects
listed for topics that cannot be found elsewhere on the Web.
On the other hand, more new usages of the topics often are
not listed in Wikipedia. A good example of this is person
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names. A search on the Web often retrieves many unique
persons with the same name but only a handful of them
can be found in Wikipedia. Second, Wikipedia pages and
topics are well-indexed by search engines and are not good
representative queries. Finally, a manual assessment does
not easily scale up to a large number of queries.

4.3 ODP categories

Our next experiment was on a randomly selected sample
of queries from Google query log. After running the queries
in both Diver and Google, we looked up the returned doc-
uments in Google directory and tagged them with the cat-
egory names under which each document was listed. Two
documents were treated in the same subject if they had at
least one category in common. Figure 3 shows the mean
number of unique aspects retrieved at r for r = 1,...,5,
measured as the ratio of the number of different categories
discovered and r. In 40% of the cases, the first document
was not tagged, leading to a ratio of 0.6 at » = 1. Unlike the
previous experiment, Diver improves upon Google in terms
of the number of different aspects retrieved by a significant
margin.

4.4 Result relevance

The previous experiments confirm our claim that the re-
sult diversity is improved in Diver. However, diversity is
meaningful only if the retrieved results are relevant. To test
for relevance, we selected from our query log a random sam-
ple of queries that were expected to have multiple aspects.
The selection criteria was (a) to include queries that had
less than 4 terms and a minimum unigram log frequency
greater than 3 (i.e. every term in the query appeared in
at least 1000 documents), as obtained from Web 1TB 5-
gram dataset [4], and (b) to exclude queries that had either
a number or one of the terms weather, picture, map, ya-
hoo, wikipedia and youtube or returned 10 or less results at
Google. This was based on the observation that both long
queries and those that match very few documents or very
specific sites are less likely to benefit from diversification.
Also to alleviate the assessment process, we excluded queries
that had all frequent terms (i.e. a minimum unigram log fre-

quency greater than 5). With this criteria, we selected 42
queries out of 427 random queries we examined (i.e. 10%
selectivity).

As for comparison with our system, Google established
one baseline for us; since our system was built on top of
Google, it was important to make sure that we are improving
and not worsening the results. As another baseline, we chose
Carbonell’s and Goldstein’s MMR [5] which combines query
relevance with result novelty. The model, referred to as
Maximal Marginal Relevance, ranks documents for a given
query @ based on both their similarities to the query and
also their dissimilarities to other selected documents, i.e.

=

de . .
MMR™ arg max A(Sima (ds, Q) — (1 — X) ma Sima(d;,d;)

(9)
where R is a set of documents retrieved for @, S C R is
the set of documents selected already, A € [0,1] and was
set in our experiments to 0.4 based on authors recommen-
dation, and Sim1 and Sime are two similarity functions. A
problem in implementing MMR is the choice of a similarity
measure between documents and query; a textual similarity
alone is not a good measure of relevance in the context of
the Web. To overcome this problem, we used the recipro-
cal rank of d; in the Google result for @ as our Sim1(ds, Q)
function. Sima2(d;,d;) was the standard Cosine similarity
between feature vectors of documents, and each feature vec-
tor included the same set of features extracted within Diver
(as explained in Sec. 3). Because of these changes, we re-
fer to this version of MMR as MMR*. MMR* turned out
performing consistently the best in terms of the precision
of the results (as discussed next) among the variations we
tried (e.g. compared to the case when Simi(d;, Q) was set
to 1 for top k documents from Google for Q) and zero for the
rest).

The selected queries were submitted to Diver, Google, and
MMR* and the top 5 results for each system were selected
for user evaluation. The evaluators were asked to assign a
score of 2 for relevant pages with enough new content, 1
for relevant pages with little new content, 0.5 for relevant
pages with no new content and 0 for non-relevant pages.
With this setting, a system that returned 5 relevant results
all covering the same topic but with little variation would
only get an average score of (2+1+1+141)/5 = 1.2
or less, whereas a system that returned relevant pages with
more variations or differences was likely to score higher. This
scoring quantifies a combined measure of both relevance and
novelty very similar to a-nDCG metric of Clarke et al. [7],
where a positive value of « indicates that novelty is rewarded
in the results proportional to @. Compared to a-nDCG, our
scoring is more discrete, making the assessment a bit easier
for our evaluators.

For evaluation, we took some extra steps to make sure that
there was no bias against one system. In particular, the or-
dering of the systems were randomized and varied from one
query to next, and the evaluators didn’t know which system
was being shown first or last. Each query was assessed by
two evaluators, and the score of a system on a query was
the average score assigned to its results.

Table 5 shows the score (calculated as the ratio of aver-
age score and the maximum score) recorded for each sys-
tem, averaged over 42 queries. Diver performs better than
Google and the difference is significant (at o = 0.05). Diver
also outperforms MMR* and the difference is significant (at
a = 0.01). The difference between Google and MMR* is



Systems | Google Diver MMR*
Score 0.56 0.61 0.54

Table 5: The ratio of average score and maximum
score at 5

not statistically significant. Checking the queries, we could
see that in 60% of the cases Diver gave better results than
Google, in 19% of the cases they scored the same, and only
in 21% of the cases Google did better. Compared to MMR*,
Diver did better in 50%, the same in 29% and slightly worse
in 21%.

To get a better feeling for the kind of results returned by
Diver, Table 6 shows the results of Diver, Google and MMR*
for a few queries. These queries are not from our random
query set and were posed to our system after an internal
presentation of the work.

4.5 Optimization efficiency

The major overhead in diversifying search results, as sug-
gested in this paper, is solving a quadratic optimization
function. To assess this overhead, we varied the number
of documents being passed to the optimizer and measured
the running time. As shown in Figure 4, the running time
increases with the number of documents, but even at an in-
put size of 500 documents, the running time was under 1
second on a modest Pentium 4 dual-core PC. On the other
hand, the input size is not expected to be large; documents
with low ranks in the search engine ranking generally have
low expectations. These documents don’t have much chance
of making to an optimal portfolio anyway, hence they may
be dropped with no or very little affect on the optimization.
Figure 5 shows the probability that a document returned at
rank i (in our case by Google) makes to an optimal portfolio.

Optimization runtime
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Figure 4: Optimization runtime

5. RELATED WORKS

Related work can be divided into the works on search
diversification and portfolio optimization.

5.1 Search diversification

Carbonell and Goldstein evaluate MMR in document re-
ordering and document summarization and report that more
users prefer diversified results [5]. In a cost function similar
to MMR, Zhai, Cohen and Lafferty [20] also combine nov-
elty and relevance and use it for subtopic retrieval. A chal-
lenge in both works is finding a balance between relevance
and novelty and adapting the functions to the settings of
a search engine; since the computation of relevance scores
within search engines may take into account many features
including similarity, freshness, and even novelty, this double-
dependence of ranks to novelty can affect the formulation
and the results. In a method similar to MMR, Zhang et
al. [22] use an affinity graph between documents where in
each step a document with the largest score is selected while
other documents with an affinity relationship to the selected
document are penalized.

Chen and Karger [6] propose a Bayesian model with an
objective function that puts at least one relevant document
in top 10. To avoid evaluating the function for all subsets of
size 10, the authors develop a greedy approach that selects
one document at a time and does not change the previous
selections as the algorithm progresses. Their greedy algo-
rithm (similar to MMR) in each step selects a document
that maximizes the objective function, conditional on the
assumption that none of the previous selections were rele-
vant. The model can be generalized to select at least k rel-
evant documents in top 10 where k is fixed. Agrawal et al.
[1] map queries and documents to ODP categories and pro-
pose an objective function that maximizes the probability
that some document from each one of the categories a given
query is assigned to is returned, conditional on the number
of returned documents being fixed at some constant. The
problem, as formulated, is NP-hard and the authors provide
a greedy approximation to their formulation. Our approach
does not fix k; in the context of the Web search, setting &
can be challenging as it would require estimating the num-
ber of query aspects in advance. Also many queries (and
sometimes documents) cannot be found in the ODP cate-
gories, as was the case for many person name and location
queries we tried; for one location query in particular, Google
reported 33,400 matches but the location was not in ODP.
We adopt a numerical approach to the problem which easily
scales to large result sizes. The recent addition of a diversity
task to the Web track at TREC [10] is also related to our
work and emphasizes the importance of the task.

Result diversification in general relates to the problem of
document clustering, in that a diversified result set may
be produced by combining the relevance scores with clus-
ter information about each document. However, running
clustering for diversification is an overkill; also clustering
ranked documents and setting some of the parameters is not
straightforward. As a client-side solution, Radlinski and Du-
mais [14] find for each query k other interesting queries in
the log within 30min window of the query and merge top
results of these queries to construct a more personalized but
diversified result set.

The issue of diversifying search results over more struc-
tured data has also garnered some interest lately. Vee et al.
[17] define a diversity ordering of attributes and a similarity
measure that weights higher order attributes more heavily
than attributes of lower order. As yet in one more domain,
Zwol et al. [23] propose a method for diversifying image
searching by sampling additional query terms from image



tags and further using those terms to find related but more
diverse collection of results.

5.2 Portfolio optimization

Our portfolio model of search is based on Markowitz’s
Nobel-prize winning portfolio selection [11]. In his seminal
work, Markowitz notes the relationship between expected
return and the associated risk in the stock market and de-
velops an optimization model that can minimize risk for a
given level of return or vice versa. The model has been used
in the areas outside finance, but to the best of our knowl-
edge, not much work is done to incorporate a similar notion
of risk to the Web search. With the exception of a recent
independent work by Wang and Zhu [18] which studies some
properties of the model when applied to a ranked list in IR,
our work is the first that applies the model to diversify Web
search results.

As in Markowitz’s portfolio selection, risk manifests in
Web search in the form of returning a result set which may
not include a user’s desired aspect. This can be due to am-
biguity in query interpretations, uncertainty about users’
intentions and sometimes heuristics that may be applied
within a search engine. Our formulation of diversity tries
to reduce risk by taking into account correlations between
pages and that if a document is not relevant, other corre-
lated documents are also likely to be not relevant.

6. CONCLUSIONS

We have proposed a model and an algorithm for diversify-
ing search engine results, and have presented an evaluation
and analysis of our algorithm and its results. To the best of
our knowledge, this is the first work that relates results qual-
ity and diversity to expected payoff and risk in clicks and
provides a model to optimize these quantities. A challenge
in any search optimization including ours is deriving statis-
tics about variables used in the model; we have presented
a few methods to derive these statistics based on data and
statistics that is generally available in search engines. There
is room to find better statistics about click-through rates
and correlations which can lead to more accurate estimates
and better search results. Another interesting related direc-
tion is detecting queries that can or cannot benefit from a
result diversification. We tried to do a little bit of this with
our heuristics in Section 4, but this area by itself, to the best
of our knowledge, is open for further research.
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Figure 5: Probability that a document at rank i makes to an optimal portfolio
Query: manber
Google Diver MMR*
1 | Udi Manber - old home page Udi Manber - Wikipedia Udi Manber - old home page
2 | Udi Manber - Wikipedia Jeffrey Manber - Wikipedia David Manber - imdb.com
3 | Udi Manber - publications Rachel Manber - academic profile Udi Manber - Wikipedia
Query: sergey
Google Diver MMR*
1 | Sergey Brin - Wikipedia Sergey Brin - Google Management Sergey Brin - Wikipedia
2 | Sergey Brin - Google Management Sergey Korolyov - Wikipedia Sergey Brin - Stanford
3 | Sergey Brin - Stanford Sergey Formin (at U. Mich.) Sergey Brin (at forbe.com)
Query: hilton
Google Diver MMR*
1 | Hilton hotel Hilton hotel (HHonors) Hilton hotel
2 | Hilton hotel online Perez Hilton blog Hilton hotel (at Germany)
3 | Hilton hotel (HHonors) Hilton Vacations Club Hilton hotel online
Query: bush
Google Diver MMR*
1 | George W. Bush - Wikipedia George W. Bush (at whitehouse.gov) | George W. Bush - Wikipedia
2 | President G.W. Bush (at whitehouse.gov) | George Bush’s library (in Texas) President G.W. Bush (at whitehouse.gov)
3 | President of US (at whitehouse.gov) George W. Bush - Wikipedia Jibjab - funny jokes
Query: jaguar
Google Diver MMR*
1 | jaguar.com (car) jaguar.com (car) jaguar.com (car)
2 | jaguarusa.com (car) jaguarusa.com (car) schrodinger.com (not related)
3 | jaguar-Wikipedia (animal) jaguar-Wikipedia (animal) jaguar.ca (car)
Query: python
Google Diver MMR*
1 | python.org (prog. lang.) Python - Wikipedia (prog. lang.) python.org (prog. lang.)
2 | Python - Wikipedia (prog. lang.) Monty python - Wikipedia Python - Wikipedia (prog. lang.)
3 | python.org/download (prog. lang.) python.org (prog. lang.) python.org/download (prog. lang.)

Table 6: Example results from Diver, Google and MMR* for various queries




