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ABSTRACT
Locality Sensitive Hashing (LSH) is widely recognized as
one of the most promising approaches to similarity search
in high-dimensional spaces. Based on LSH, a considerable
number of nearest neighbor search algorithms have been pro-
posed in the past, with some of them having been used in
many real-life applications. Apart from their demonstrat-
ed superior performance in practice, the popularity of the
LSH algorithms is mainly due to their provable performance
bounds on query cost, space consumption and failure prob-
ability.
In this paper, we show that a surprising gap exists be-

tween the LSH theory and widely practiced algorithm anal-
ysis techniques. In particular, we discover that a critical
assumption made in the classical LSH algorithm analysis
does not hold in practice, which suggests that using the ex-
isting methods to analyze the performance of practical LSH
algorithms is a conceptual mismatch. To address this prob-
lem, a novel analysis model is developed that bridges the
gap between the LSH theory and the method for analyz-
ing the LSH algorithm performance. With the help of this
model, we identify some important flaws in the commonly
used analysis methods in the LSH literature. The validity
of this model is verified through extensive experiments with
real datasets.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Meth-
ods; F.0 [Theory of Computation]: General
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Locality Sensitive Hashing, Probabilistic Algorithm, Algo-
rithm Analysis
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1. INTRODUCTION
The nearest neighbor (NN) search in high dimensional

spaces under some distance function is of great importance
in areas such as database, information retrieval, data min-
ing, pattern recognition and machine learning. When the
dimensionality of the data is low, a number of access meth-
ods (R-tree [13], kd-tree [6]) have been shown to perform
well in practice. As the dimensionality grows higher (e.g.,
larger than 50), however, it has long been recognized that
these traditional tree-based indexing methods offer little im-
provement over a linear scan that compares a query to every
point of the dataset [21]. This phenomenon is often called
“the curse of dimensionality”.

To overcome the search time bottleneck, there have been
several proposals of approximation algorithms that trade
precision for speed [1, 4]. In this paper, we focus on one
of the most promising approximate NN search algorithm-
s called Locality Sensitive Hashing, which has been widely
applied in a variety of domains, including web clustering,
computer vision and computational biology [3, 17].
We should point out that LSH does not solve approxi-

mate NN queries directly, and was originally proposed for
a different problem called c-approximate r-near neighbor
search (see Definition 1 in Section 2.2) in high-dimensional
spaces [16]. The key idea behind LSH is that it is possi-
ble to devise hash functions such that points close to each
other in some metric space collide with higher probability
than do points that are far from one another. If a family
H of hash functions satisfies the condition listed in Defini-
tion 2 (presented in Section 2.2), H is called locality sensi-
tive. To date, several LSH families have been discovered for
different similarity (dissimilarity) measures such as Ham-
ming distance [16], ls distance [9] with s ∈ [0, 2], Jaccard
coefficient [7], Cosine distance [8], etc.
Given a particular metric and the corresponding LSH fam-

ily H, an efficient approximate NN search algorithm can
be easily devised, which will be discussed in detail shortly.
Simply speaking, during a preprocessing phase, a number
of hash tables or buckets are created by hashing all points
in the dataset using independent hash functions randomly
chosen from H. To process a query, one only need to hash
the query point and retrieve the elements stored in buckets
containing that point.
Thanks to the soundness of the LSH theory, algorithm-

s based on LSH are capable of providing, with some con-
stant failure probability, excellent asymptotic performance
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Figure 1: SRk,L
r vs. k (r = 0.4, δ = 0.1)

in terms of space usage and query cost. Such theoretical re-
sults were originally proved in the influential paper by Indyk
and Motwani for their classic LSH algorithm [16], and ever
since then, the method of proof developed in their paper has
been widely used by the vast majority of other LSH variants,
e.g., LSH-forest [5], LSB-tree [20], Multi-probe LSH [18],
and C2LSH [11], in order to obtain the corresponding theo-
retical guarantees.
Surprisingly, in our experimental study, we observe a sig-

nificant deviation between the real and expected perfor-
mance of the classic LSH algorithm proposed in [16]. For
example, consider one typical experiment shown in Figure 1,
where the expected success ratio represents the expected per-
formance and the maximum, minimum and average success
ratios are the actual best, worst and average performance,
respectively1. In theory, the actual success ratios, including
the maximum, minimum and average, should well match the
expected performance [3], but the fact, shown in Figure 1, is
that an obvious gap exists between the maximum/minimum
and expected algorithm performance (12 percent maximum
difference)2, which contradicts the results obtained using the
widely-accepted analysis method that will be reviewed in
Section 2.3.
Clearly, such a significant difference cannot be simply at-

tributed to “random errors” in the experiment. Instead, as
will be discussed in the rest of this paper, this performance
gap reveals a subtle problem that has been ignored for years.
Motivated by this observation, we carry out a systematic
in-depth investigation of LSH with the following important
findings:

• We observe that a critical assumption used in the LSH
algorithm analysis is incorrect from a practical per-
spective, which may lead to problematic theoretical
results.

1To avoid blurring the main problem we want to explain,
the discussion of the parameters such as k, L, r and δ in
Figure 1 is deferred till Section 2.
2In Figure 1, one can also see a nice match between the
actual average success ratio and the expected performance,
which well confirms our theoretical analysis that will be dis-
cussed in Section 3.5.2.

• A novel model is developed to bridge the gap between
the expected theoretical performance and the observed
performance of the LSH algorithms. Based on this
model, we identify a fatal flaw in the proof of Theo-
rem 4 in [16], which implies that, in theory, the perfor-
mance guarantees of almost all LSH algorithm imple-
mentations are questionable. In particular, the con-
stant probability, with which the LSH algorithms re-
port the approximate r-near neighbors of a query as
proved in [16] and many other LSH papers, may not
exist at all.

• We also inspect the parameter selection approach for
the classic LSH algorithm, and show that the actual
failure probability for the randomized r-near neighbor
reporting problem (Definition 4) fluctuates around, in-
stead of being always equal to, the specified failure rate
with the chosen values of k and L. A practical impli-
cation of this finding is that one can more precisely
predict the behavior of LSH using the model proposed
in this paper.

• To verify our arguments, extensive experiments have
been performed with several real datasets. Experi-
mental results confirm the validity of our model and
demonstrate that the existing analysis model (although
incorrect) is a good approximation of the accurate one
proposed in this paper when the cardinality of dataset
is sufficiently large.

The rest of this paper is organized as follows. A brief
overview of LSH and the related work are provided in Sec-
tion 2. Section 3 presents the main theoretical results of
this paper. An Empirical study to validate our model is de-
scribed in Section 4. Finally, we conclude this paper with
a summary of our results and a brief discussion on future
work in Section 5.

2. BRIEF OVERVIEW OF LSH AND THE
RELATED WORK

2.1 The nearest neighbor search problem
Locality sensitive hashing is closely related to the problem

of nearest neighbor (NN) search in high-dimensional spaces
under some distance metric. Thus, before presenting the
technical details of LSH, we first give the necessary notations
and definitions as to NN search.
We use O to denote a set of data points, and assume all

points oi ∈ O belong to a d-dimensional space �d. Let oj

denote the jth coordinate of o, j = 1, 2, . . . , d. For any two
points o and q in O, the distance (ls norm) between them is
defined as follows:

‖q − o‖s = (
d∑

j=1

|qj − oj |s)1/s (1)

Given a dataset O, the nearest neighbor NNq ∈ O of a
query point q under ls norm is defined as follows:

‖q −NNq‖s ≤ ‖q − o‖s, ∀o ∈ O (2)

To simplify notations, we often skip the subscript s in the
sequel.
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NN search is aimed at, given a dataset and a query point,
finding a way to (efficiently) report the nearest neighbor of
the query. Essentially, the NN search problem is a concrete
instance of an optimization problem since its goal is to find
the point that minimizes a chosen objective function (the
distance to the query point in this case) [3]. It has long
been recognized that, for large enough d, most solutions to
NN search offer little improvement over a linear scan that
compares a query to every point from the dataset. This phe-
nomenon is often called “the curse of dimensionality” [21].
In view of the difficulty in solving this problem directly,

Indyk et al. propose to first deal with the r-near neighbor
(rNN) search problem, which is originally termed as Point
Location in Equal Ball (PLEB) in [16]. rNN search is the
decision version of the NN search problem. A point o is
called the r-near neighbor of query q if the distance between
o and q is at most r. The purpose of rNN search is to report
some r-near neighbor of q if there exists at least one rNN of
q. Consider the running example depicted in Figure 2, o1 is
the NN of q and both o1 and o2 are r-near neighbors of q.
Algorithms supporting rNN search still suffer from the

curse of dimensionality. Fortunately, in many areas, approx-
imate nearest neighbors (ANN) are also acceptable [1]. Giv-
en a query point q, a data point, say ANNq, is called an ANN
of q under ls norm if it satisfies ‖q−ANNq‖s ≤ c‖q−NNq‖s,
where c > 1 is the approximate factor. The decision ver-
sion of the ANN search problem, namely, the c-approximate
r-near neighbor search problem (previously known as the
ε-PLEB problem [16]), is defined as follows:

Definition 1 ([3]). Given a set O of points in a d-
dimensional space �d and parameter r > 0, construct a data
structure such that, given any query point q, if there exists
an r-near neighbor of q in O, it reports some c-approximate
r-near neighbor of q in O.

In Figure 2, o1 and o2 are obviously the c-approximate
r-near neighbors (crNN) of q since their distances to q are
less than r. Besides, o3 is a crNN of q as well because it falls
in the outer circle.
It has been shown that the algorithm for crNN search can

be used as a building block to solve the ANN search prob-
lem [14, 16]. Therefore, finding an efficient solution to crNN
search is a pivotal step towards achieving the final goal. In-
tuitively, the crNN search problem is much weaker than the
corresponding exact version, namely, the rNN search prob-
lem. The fact, however, is that devising an efficient deter-
ministic algorithm for this problem remains difficult. To this
end, by trading certainty for speed, Indyk et al. propose lo-
cality sensitive hashing, which provides attractive sub-linear
search time at the expense of some constant failure proba-
bility.

2.2 Locality sensitive hashing
Locality sensitive hashing is one of the most popular (ap-

proximate) NN search algorithms in high-dimensional spaces.
The rationale behind this algorithm is that, by using spe-
cific hashing functions, we can hash the points such that
the probability of collision for data points which are close to
each other is much higher than that for those which are far
apart.
In the rest of this paper, we use H to denote a family of

hash functions mapping �d to some universe U . For any two
points o and q, a hash function h is chosen from H uniformly
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Figure 2: A running example for illustrating the
concepts and definitions discussed in Section 2.

at random. If the probability that these two points collide
(h(q) = h(o)) satisfies the following condition, the family H
is called locality sensitive.

Definition 2 (Locality sensitive hashing [16]). A
family H of hash functions is called (r, cr, p1, p2)-sensitive if,
for any two points o, q ∈ �d and h ∈ H, it satisfies the fol-
lowing:

• if ‖q − o‖ ≤ r then PrH[h(q) = h(o)] ≥ p1

• if ‖q − o‖ ≥ cr then PrH[h(q) = h(o)] ≤ p2

For an LSH family to be useful, it has to satisfy p1 > p2.
Given an LSH family H, the classic LSH algorithm, de-

noted by LSHC , works as follows. For parameters k and L,
L functions gj(q) = (h1,j(q), . . . , hk,j(q)) are chosen, where
hi,j(1 ≤ i ≤ k, 1 ≤ j ≤ L) is drawn independently and uni-
formly at random from H [16]. For each point o ∈ O, the
bucket gj(o) is computed, for j = 1, . . . , L, and then o is
inserted into the corresponding bucket. To process a query
q, one has to compute gj(q), j = 1, . . . , L, first, and then
retrieve all points that lie in at least one of these bucket-
s. For all candidate points retrieved, a filtering procedure
is performed to calculate the distance of each point to the
query. Basically, there are two principal filtering strategies
according to [3].

1. Interrupt the search after finding the first T points for
some integer T , and return the point with the mini-
mum distance to the query point

2. Continue the search until all points that collide with
the query are processed, and the points whose dis-
tances to the query are less than r are returned.

These two strategies, combined with the data structure
discussed earlier, result in different behaviors of LSHC . In
particular, the first strategy is aimed at solving the random-
ized crNN search problem, which is defined as follows.

Definition 3 ([3]). Given a set O of points in a d-
dimensional space �d, and parameters r > 0, δ > 0, con-
struct a data structure such that, given any query point q, if
there exists an r-near neighbor of q in O, it reports some c-
approximate r-near neighbor of q in O with probability 1−δ.

Unlike its deterministic counterpart, the solution to ran-
domized crNN search may produce false positive. To be
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specific, take, again, the scenario illustrated in Figure 2 as
an example. Although o4 falls outside the outer circle, it
still has a chance to be reported as the crNN of q.
Strategy 1 is of great importance in theory as it owns

attractive asymptotical query and space performance, pro-
vided that the values of parameters k and L are properly
chosen. Despite its theoretical significance, Strategy 1 is
rarely used in practice because of the undesirable quality of
result compared to Strategy 2.
Strategy 2 enables us to solve the randomized r-near neigh-

bor reporting problem, which is defined as follows.

Definition 4 ([3]). Given a set O of points in a d-
dimensional space �d, and parameters r > 0, δ > 0, con-
struct a data structure such that, given any query point q,
reports each r-near neighbor of q in O with probability 1−δ.

The problem defined above is a special case of the random-
ized version of the r-near neighbor search problem, where all
(not just some) rNNs of q are returned. Note that Strategy
2 provides much better result quality since all data points
in the answer set are rNNs of the query, and thus no false
positive is returned. There, however, might still be false
negative if some rNNs do not collide with the query. To see
this, consider the example shown in Figure 2. While both
o1 and o2 are rNNs of q, Strategy 2 might only report o2 as
the final result.
Instead of reporting all rNNs of the query, a practical im-

plementation of Strategy 2 often sorts all rNNs in ascending
order of their distances to the query, and only returns the
nearest neighbor (the K-nearest neighbor) of the query by
picking the first point (the first K points) from the sorted
list. It is evident that Strategy 2, together with the sorting
procedure, can provide much better quality of result com-
pared to Strategy 1. The price, however, we have to pay
is the much higher query time and the lack of theoretical
guarantee on the running time of queries.

2.3 Theoretical performance of the classic LSH
algorithm

The most appealing feature of the algorithms based on
LSH is that, by setting proper values for parameter k and
L, the query times of these algorithms are much lower than
those of other competitors, either theoretically or practically.
Next, we present some important theoretical results as to
the classic LSH algorithm, under Strategy 1 and Strategy 2,
respectively.
In Strategy 1, if we set k = log1/p2n and L = nρ, where

ρ = ln1/p1
ln1/p2

, then for the randomized crNN search problem,

the query time is dominated by O(nρ) distance computa-
tions and O(nρlog1/p2n) evaluations of hash functions from
H, with some constant failure probability δ < 1 [12, 16, 9].
In Strategy 2, failure probability and query time also de-

pend heavily on k and L. Different from Strategy 1, no
theoretical guarantee exists for query time and, in the worst
case, the cost to process a query might be as high as O(n) [3].
Such a situation will occur if a huge amount of data points
collide with the query point due to a bad choice of parameter
values. Fortunately, for many real datasets, a careful choice
of values for k and L leads to a sublinear query time [5, 20].
A commonly used parameter selection method for Strate-

gy 2 is as follows [3, 15, 19]. Assume o is an r-near neighbor

of q, and consider any parameter k. For any function gj ,
the probability that gj(o) = gj(q) is at least pk1 . Therefore,
for some j = 1, 2, . . . , L, the probability that gj(o) = gj(q)
is at least 1− (1− pk1)

L. By setting L = log1−pk1
δ, we have

(1 − pk1)
L ≤ δ. As a result, any r-near neighbor of q is re-

turned by Strategy 2 with probability at least 1− δ. How to
choose a proper k is not a trivial issue and out of the scope
of this paper, we would like refer interested readers to [3] for
a detailed discussion.

3. REVISITING LOCALITY SENSITIVE HAS-
ING

3.1 Preliminaries
In the rest of this paper, we use a slightly different de-

scription of locality sensitive hashing for our purpose, which
is defined as follows.

Definition 5. A family H is called locality sensitive if
for any two points o, q ∈ �d, it satisfies

PrH[h(q) = h(o)] = fH(r) (3)

where r is the distance between q and o, and fH(r) is a
monotonically decreasing function of r.

Please note that, although stated in a different form, Def-
inition 5 is essentially equivalent to the original definition
given in [16]. Actually, our definition is very similar to the
LSH definition used in [8], which focuses on Jaccard and
Cosine similarity measures.
For ANN search in a d-dimensional space under some ls

norm, the analytical expressions of fH(r) have been discov-
ered for s ∈ [0, 2]. Two particular instances (s = 1, 2) will be
discussed shortly in Section 3.2 and Section 4.1, respectively.
By Definition 5, it is easy to see that PrH[h(q) = h(o)]

actually depends only on the distance r between q and o,
and has nothing to do with their specific locations in the d-
dimensional space. In other words, each coordinate of both
q and o can take arbitrary values as long as the distance
between them remains to be r. Hence, we will use PrH[r]
and PrH[h(q) = h(o)] (‖q − o‖ = r) interchangeably in the
following sections.

3.2 Some implication of using LSH in practice
In this section, we reexamine the rationale behind LSH

and illustrate what is the actual implication for practitioners
if a family of hash functions is locality sensitive.
Recall that the existence of the LSH families is the foun-

dation for various different LSH algorithms. To make it easy
to follow, we use the LSH family for Hamming space as an
example to elaborate our main argument. It is worth noting
that the results presented in this paper are not confined to
this special case only, but applicable to all LSH families.
In Hamming space, the data points are binary, that is,

each coordinate is either 0 or 1, and the dissimilarity be-
tween points is measured by the Hamming distance, which
is defined as the number of positions at which the values
are different. For binary data points, the Hamming dis-
tance is equivalent to the Manhattan distance (l1 norm).
Figure 3 depicts a simple example with two binary points,
where d = 10 and the distance between q and o1 is equal to
3.
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A locality sensitive family of functions HH exists for Ham-
ming space. To be specific, HH contains all functions hi that
map data points from (0, 1)d to (0, 1) such that hi(o) = oi.
Take Figure 3 as an example, in total there are 10 different
hash functions in HH since d = 10. If we choose h2 from HH

to map these two points into a (0, 1) space, we get h2(q) = 1
and h2(o1) = 0.
To see why HH is locality sensitive, let’s start with the

concrete example depicted in Figure 3. Recall that the
distance between o1 and q is 3, and the dimensionality is
10. Therefore, if we choose a hash function h uniformly at
random from HH to hash o1 and q, the probability that
PrHH [h(q) = h(o1)] is equal to 1− 3/10.
To extend this observation to a more general case, consider

two binary points q and o in a d-dimensional space under
the Hamming metric. Assume the distance between q and
o is r. It is not difficult to see that the probability that
PrHH [h(q) = h(o)] is equal to the proportion of coordinates
on which p and o agree, that is, PrHH [h(q) = h(o)] = 1 −
‖q−o‖1/d = 1− r/d. Since 1− r/d decreases monotonically
with r, it follows that HH is locality sensitive according to
Definition 5.
Having HH at hand, we are now ready to scrutinize the

real implication of LSH from a statistical perspective. Ac-
cording to the Law of Large Numbers (LLN), a probabilistic
interpretation of PrHH [r] = 1 − r/d is that, for any two
points o and q with distance r, if we choose a large num-
ber, say 10, 000, of hash functions uniformly at random from
HH , then the proportion of hash functions over which o and
q collide will be very close to 1 − r/d. Although this inter-
pretation is easy to understand, it, however, does not lead
to a feasible LSH algorithm directly.
To illustrate, consider a näıve (impractical) LSH algorith-

m LSHN , which intends to solve the same target problem
as LSHC . For ease of presentation, we assume k = 1 and
L = 1. Given a dataset O and a query q, in order to find
the r-near neighbors of q, LSHN works as follows: (1) gen-
erates a large number, say 10, 000, hash functions uniformly
at random from HH and inserts all data points in O into the
10, 000 hash tables; (2) for each data point o in O, computes
the collision ratio, i.e., the proportion of these 10, 000 hash
functions over which o and q collide; if the collision ratio is
greater than 1−r/d, then reports o as as an r-near neighbor
of q.
The problems with LSHN are obvious. First, to reduce the

number of false negative caused by the probabilistic nature
of this algorithm, one has to build a large number of hash
tables, which may incur prohibitively huge storage cost. Sec-
ond, even if the number of hash tables is sufficiently large,
it is still difficult or even impossible to obtain a theoretical
bound on failure probability, i.e., the probability of a false
negative being produced.
While LSHN is impractical, almost all LSH theoretical re-

sults are only valid for such an infeasible algorithm. Next,
we will show the mismatch between the practical LSH algo-
rithm and the widely practiced LSH analysis techniques.

3.3 Some of the problems with the existing anal-
ysis methods

After examining the exact meaning of LSH and the infea-
sibility of LSHN , we focus on a practical LSH algorithm, i.e.,
LSHC , in this section. For ease of presentation, we continue
to assume k = 1 and L = 1.

Recall that, to build the core data structure, LSHC first
randomly chooses a hash function, say h, from HH , and
then maps all data points in O, using h, into a (0, 1) space.
Given a radius r, to find all rNNs of a query q, the algorithm
(under Strategy 2) scans all data points lying in the bucket
h(q), and reports points whose distances to q are less than
r. As discussed in Section 2.3, the failure probability of this
algorithm is no greater than 1− PrHH [r] = r/d.

Although the above analysis seems quite reasonable (giv-
en the fact that HH is locality sensitive and PrHH [r]
= 1 − r/d), we argue that this commonly used analysis
method is problematic, and thus may lead to questionable
results. Specifically, we notice that a critical assumption in
this method is not correct, which is stated as follows.

Observation 1. For any fixed hash function h ∈ H cho-
sen by a concrete instance of LSHC , the probability that a
random pair of points with distance r collides over h, denot-
ed by Prh[r], may be not equal to PrH[r].

To make this observation easy to comprehend, consider
two datasets shown in Figure 4, where the distance of each
pair of points is equal to 1. As discussed earlier, PrH[1] =
1− 1/10 = 9/10 for both datasets. Unlike PrH[1], however,
Prh[1] has different values for different datasets. For exam-
ple, if the hash function h3(o) = o3 is chosen for use, then
for dataset 1, the probability of collision for a random pair of
points is 1, while for dataset 2, the probability of collision is
only 3/4. In fact, a more careful observation will reveal that,
even for the same dataset, choosing different hash functions,
i.e., different hi, i = 1, . . . , 10, may lead to different Prh[1]!

Observation 1 tells us that (1) Prh[r], instead of PrH[r],
should be used to analyze the performance of LSHC be-
cause, for a specific LSHC instance being able to work, the
chosen hash functions have to be fixed rather than“random-
ly chosen”, and (2) Unlike PrH[r], which is determined by
the nature of the LSH family, Prh[r] depends only on the
specific hash function chosen from H and the characteristics
of dataset. Consequently, in essence, PrH[r] and Prh[r] are
totally different. The difference, however, is so subtle that
it has been ignored for years. Here we omit the subscript
H for HH intentionally to emphasize that our observation
actually holds for all LSH families. Before giving a detailed
explanation of this difference, we need to first review a few
terms in probability theory.
An experiment is any procedure that can be infinitely re-

peated and has a well-defined set of results. The collection
of all results is called the sample space of the experiment.
An element of the power set of the sample space is called an
event. If the results that actually occur fall in a given event,
the event is said to have occurred.
In the case of LSH, an experiment, for both PrH[r] and

Prh[r], has two inputs, namely, a hash function hi and a
pair of points pj,r with distance r, and two possible results,
that is, collision or no collision for a single trial, denoted by
the binary-valued variable Coli,j , where Coli,j = 1 means
collision, and 0 otherwise. Although sharing the same pro-
cedure of experiment, PrH[r] and Prh[r] differ significantly
in the way the corresponding events are defined. To be spe-
cific, the event associated with PrH[r] is formally defined
as {Coli,j | pj,r is fixed and the hash functions are random-
ly chosen from H}, while the relevant event for Prh[r] is
the result set {Coli,j | hi is fixed and the pair of points is
randomly chosen from O}.
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Figure 3: An illustration of the exact meaning of LSH. The probability of collision for q and o1 can be
estimated by the fraction of these 10,000 hash functions over which they collide.
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Figure 4: The probabilities of collision for different
datasets using the same hash function are different.
Prh3 [1] for dataset 1 is equal to 1, whereas for dataset
2, it is only 3/4. Neither of them is equal to PrHH [1],
i.e., 9/10

Informally, to figure out PrH[r], the experiment is repeat-
ed by fixing the pair of points and randomly picking a hash
function from H, whereas for Prh[r], the hash function is a
constant factor and the randomness of the experiment de-
pends only on the characteristics of dataset, e.g., the cardi-
nality of dataset and data distribution.
In the LSH literature, the performance analysis of almost

all LSH algorithms relies on the basic assumption Prh[r] =
PrH[r], either explicitly or implicitly. The fact, however,
is that while PrH[r] is identical for all pairs of points with
distance r, Prh[r] often varies with h. Consequently, the
correctness of theoretical results obtained using the existing
analysis method is questionable, and should be reinvestigat-
ed. Next, we will first give an important theorem to estab-
lish the quantitative relation between Prh[r] and PrH[r].
Then, some flaws in the performance analysis of LSHC are
identified.

3.4 Characterizing relation between Prh[r] and
PrH[r]

Theorem 1. Given an LSH family H and a set O of d-
dimensional data points, assume n hash functions are chosen
uniformly at random from H, and the number of pairs of
points with distance r in O is m. Prh[r] and PrH[r] are
related in the following formula:

Pr
[

lim
m,n→∞

PrH[r] =

n∑
i=1

Prhi [r]/n
]
= 1.

Proof. For any hash function, say hi, randomly chosen
fromH, assume the number of pairs of points with distance r
that collide over hi is si, then the collision rate for hi is si/m.
On the other hand, for any pair of points with distance r,
say pj,r, in O, assume the number of hash functions over
which it collides is tj , then the collision rate for pj,r is tj/n.
According to LLN, we have the following equations.

Pr
[

lim
n→∞

PrH[r] = tj/n
]
= 1, ∀j = 1, . . . ,m (4)

Pr
[

lim
m→∞

Prhi [r] = si/m
]
= 1, ∀i = 1, . . . , n (5)

By adding the system of equations together, we get

Pr
[

lim
n→∞

mPrH[r] =

m∑
j=1

tj/n
]
= 1 (6)

Pr
[

lim
m→∞

n∑
j=1

Prhi [r] =

n∑
i=1

si/m
]
= 1 (7)

After simple equation transformation for (6) and (7) it
follows

Pr
[

lim
n→∞

nmPrH[r] =
m∑

j=1

tj
]
= 1 (8)

Pr
[

lim
m→∞

m

n∑
i=1

Prhi [r] =

n∑
i=1

si
]
= 1 (9)

Since the total collision number of all pairs of points is a
constant, we have

m∑
j=1

tj =

n∑
i=1

si (10)

By substituting this equation into (9) we have

Pr
[

lim
m,n→∞

PrH[r] =

n∑
i=1

Prhi [r]/n
]
= 1 (11)

We prove the theorem .

Theorem 1 indicates that there exists an intrinsic relation
between Prh[r] and PrH[r] although they are defined from
different angles. With Theorem 1, we are now ready to
reexamine the methods for LSHC performance analysis.
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3.5 Some of the flaws in the classic LSH algo-
rithm analysis

In this section, some flaws in the methods by which the
theoretical performance of LSHC was previously analyzed
will be demonstrated. Please note that the problems to be
identified are only genuine for the LSHC analysis; for the
impractical LSH algorithm (LSHN ), all existing theoretical
results still hold. Before presenting our main results, we
need to make an assumption that is necessary for the fol-
lowing discussion.
As shown in Theorem 1, although Prh[r] and PrH[r] are

intrinsically connected, the relation between them is not de-

terministic since
n∑

i=1

Prhi [r]/n only converges almost surely

towards PrH[r] when m and n approach infinity. Thus, it
is difficult to examine the existing methods merely under
such an uncertain condition. As a workaround, we assume

PrH[r] =
n∑

i=1

Prhi [r]/n to ease our analysis. Please note

that, according to LLN, this assumption is reasonable if n
and m are sufficiently large.
Recall that Strategy 1 and Strategy 2 are two principal

filtering approaches used in LSHC , and their performance
has been discussed in Section 2.3. Next, we will investigate
what’s wrong with the performance analysis for these two
strategies.

3.5.1 Strategy 1
The theoretical performance of LSHC under Strategy 1

was originally proved in Theorem 4 in [16], and the corre-
sponding method of proof has been accepted as the standard
analysis technique in the LSH literature thereafter. Being
aware of the difference between Prh[r] and PrH[r], we, how-
ever, point out the following observation:

Fact 1. An important premise, based on which the the-
oretical results in Theorem 4 in [16] were derived, does not
hold in practice actually.

Proof. A key step in the proof of Theorem 4 in [16] is
to show that, given two data points o and q with distance
less than r, gj(o) = gj(q) holds for some j = 1, . . . , L with a
constant probability if proper values of k and L are chosen.
In order to obtain such a constant probability, the au-

thors use PrH[gj(o) = gj(q)] = PrH[r]k (‖o− q‖ = r) as an
indispensable premise in the proof. With the help of Ob-
servation 1, we know that this premise should be replaced
by

PrH[gj(o) = gj(q)] =

k∏
i=1

Prhi [r]

Under the assumption that PrH[r] =
n∑

i=1

Prhi [r]/n, it is

easy to see that PrH[r]k ≥
k∏

i=1

Prhi [r] according to Obser-

vation 2 below. As a result, it follows that PrH[gj(o) =
gj(q)] ≤ PrH[r]k, which contradicts the widely-held belief
that PrH[gj(o) = gj(q)] = PrH[r]k first used in [16]3.

3Without the assumption that PrH[r] =
n∑

i=1

Prhi [r]/n,

PrH[gj(o) = gj(q)] will be less than, equal to or greater

Observation 2. Given
m∑
i=1

ui = C, where ui ∈ [0, 1], i =

1, 2, . . . ,m and C is a constant,
m∏
i=1

ui is maximized when

the variance of ui is zero, i.e., u1 = u2 = · · · = um, and the

value of
m∏
i=1

ui decreases as the variance of ui increases.

It is worth noting that Fact 1 does not rule out the exis-
tence of such a constant probability. The only implication
of Fact 1 is that all theoretical results, which depend on
the condition that PrH[gj(o) = gj(q)] = PrH[r]k, are ques-
tionable. Considering the uncertain relation between PrH[r]

and
n∑

i=1

Prhi [r]/n, we conjecture that, for LSHC , it might

be difficult to obtain a constant failure probability like the
one given in [16].

3.5.2 Strategy 2
Next, we look into LSHC under Strategy 2. Recall that

in Strategy 2, given k and δ, L should be at least equal to
log1−pk1

δ in order to achieve a failure probability no greater

than δ. In practice, L is often chosen such that (1−pk1)
L = δ.

Using our notations, L can be rewritten as

L = log1−PrH[r]kδ (12)

By Observation 1, the probability of collision for a random
pair of points with distance r is Phi [r]. As a result, given the
L value calculated by Equation (12), the actual failure prob-

ability, denoted by PrA[r], should be
L∏

j=1

(1 −
k∏

i=1

Prhi [r])

instead of δ. Since Prh[r] varies with h, PrA[r] cannot be
a constant as well. Interestingly enough, although PrA[r]
itself is a random variable since all hash functions are ran-
domly chosen, its expectation is exactly equal to δ.

Theorem 2. E
[
PrA[r]

]
= δ

Proof. Omitted due to space limitation. The full version
is available on request.

An immediate corollary of Theorem 2 is that the actual
failure probability fluctuates around, rather than is always
equal to, the specified failure rate δ, which will be justified
experimentally in Section 4.4.2

4. EXPERIMENTAL VALIDATION
In this section, we conduct extensive experiments to verify

the validity of our arguments presented in this paper. Sec-
tion 4.1 describes the hash functions to be examined. Sec-
tion 4.2 lists datasets with which the experiments are carried
out. Section 4.3 elaborates on how data are preprocessed.
Finally, the experimental results are reported in Section 4.4.

4.1 The LSH family
In [9], the authors propose a popular LSH family for l2

norm, denoted by HE , based on the concept of p-stable dis-
tributions. The LSH function is defined as follows:

h(o) =

⌊
�a · �o+ b

w

⌋
(13)

than PrH[r]k with some unknown probabilities respectively,
which still contradicts PrH[gj(o) = gj(q)] = PrH[r]k.
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where �o denotes the d-dimensional vector representation of
a data point o; �a is a d-dimensional vector, each component
of which is drawn independently from Gaussian distribution

defined by the density function g(x) = 1√
2π

e−x2/2; �a · �o rep-

resents the inner product of �a and �o; b is a real number
chosen uniformly from [0, w], and w is a constant that has
to be specified a priori.
Under HE , the probability of collision for any two points

with distance r is calculated as follows:

PrHE [r] =

∫ w

0

1

r
f(

t

r
)(1− t

w
)dt (14)

where f(x) = 2g(x).
We chooseHE to verify our arguments for two reasons: (1)

HE is a very popular LSH family and has many successful
applications in practice [20]; (2) A nice implementation of
the LSH algorithm using HE , i.e., the E2LSH package, is
publicly available [2]. Thus, it is easy for interested readers
to repeat our experiments.

4.2 Datasets
We perform the experiments with several real datasets,

including mnist1k, mnist10k, audio10k and color10k. All
data are normalized such that each dimension has domain
[0, 1]. The distance metric is Euclidean distance.
Mnist. The mnist dataset4 consists of 60,000 handwrit-

ten pictures, and each picture has 28 × 28 pixels, each of
which is represented by an integer in the range of [0, 255].
Thus, each data point is 784-dimensional. For our purpose,
we use two subsets of the original mnist dataset, i.e., m-
nist10k and mnist1k, because the number of points in them
is already large enough to verify our claim. Mnist10k is
a test set of 10,000 points used in [10]. Mnist1k has only
1000 points and can be downloaded along with the E2LSH
package.
Audio and Color. The audio dataset5 contains more

than 50,000 192-dimensional data points, which are extract-
ed from the LDC SWITCHBOARD-1 collection. This col-
lection consists of 2,400 two-sided telephone conversations a-
mong 543 speakers from different areas in the United States.
Color is a 32-dimensional dataset6 with more than 68,000
points, where each point describes the color histogram of an
image in the Corel collection. For our purpose, we randomly
choose 10,000 points from the audio and color datasets re-
spectively to form the audio10k and color10k datasets, with
which the experiments are performed.

4.3 Data preprocessing
The purpose of this experimental study is not to evaluate

the performance of some NN search algorithm, but to ver-
ify the validity of our theoretical analysis. To this end, all
datasets are preprocessed in the following way.
For each dataset, all 2-combinations, i.e., all possible pairs

of points, are enumerated out of the dataset, and the dis-
tance of each pair is calculated. Then, all pairs of points
are arranged in ascending order of their distances. Let dmin

and dmax denote the minimum distances computed, respec-
tively. In order to ensure comprehensive verification, start-
ing at r = dmin, we choose a series of radii with spacing

4http://yann.lecun.com/exdb/minist/
5http://www.cs.princeton.edu/cass/audio.tar.gz
6http://kdd.ics.uci.edu/databases/CorelFeatures/

0.1, i.e., r = dmin + 0.1, dmin + 0.2, . . . , within the range of
[dmin, dmax]. For each radius r, the pairs of points whose
distances fall in the range of [r − 0.01, r + 0.01] are selected
to form the set Sr. Here we do not require the distance to
be exactly equal to r because it is hard to find enough pairs
of points satisfying this criterion, even for large datasets.
In the empirical study to be discussed shortly, we experi-
ment with a large number of Srs produced from the several
datasets to confirm our arguments given in earlier sections.

4.4 Experimental Results and Analysis

4.4.1 Experiment 1
In this set of experiments, we first choose 10,000 hash

functions uniformly at random from HE , and then choose
100 random pairs of points, denoted by pj,r, j = 1, . . . , 100,
from each Sr

7. For each pj,r, the hash-function-based colli-
sion ratio, namely, the proportion of these 10,000 hash func-
tions over which pj,r collides is calculated. Let CR

pj
r denote

the collision ratio of pj,r. The average hash-function-based
collision ratio, denoted by CRp

r , is the mean of all CR
pj
r ,

namely,
100∑
j=1

CR
pj
r /100.

Since all experimental results with respect to different
datasets are very similar, we only report the collision ra-
tios of 10 pairs of points chosen from the mnist1k dataset
in Table 1. The probabilities of collision (PrHE [r]), which
are calculated according to Equation (14), and the average
collision ratios are also listed.
As shown in Table 1, the collision ratios of these 10 pairs

of points are very close at each different radius value, and the
average collision ratio is considerably close to the probability
of collision, which confirms our interpretation of PrHE [r],
i.e., PrHE [r] does not rely on any particular pair of data
points; it is only determined by the nature of the given LSH
family.

Table 1: Samples of the hash-function-based colli-
sion ratios

r=0.4 r=0.5 r=0.6 r=0.7 r= 0.8

CRp1
r 0.6953 0.6216 0.5550 0.4896 0.4519

CRp2
r 0.6868 0.6139 0.5539 0.5019 0.4490

CRp3
r 0.6911 0.6145 0.5519 0.5025 0.4436

CRp4
r 0.6805 0.6126 0.5401 0.4795 0.4445

CRp5
r 0.6880 0.6126 0.5481 0.4925 0.4431

CRp6
r 0.6844 0.6064 0.5392 0.4940 0.4391

CRp7
r 0.6771 0.6084 0.5451 0.4953 0.4444

CRp8
r 0.6739 0.6007 0.5403 0.4907 0.4368

CRp9
r 0.6801 0.6024 0.5311 0.4867 0.4413

CRp10
r 0.6748 0.5981 0.5354 0.4813 0.4304

CRp
r 0.6836 0.6092 0.5442 0.4889 0.4437

PrHE [r] 0.6825 0.6095 0.5451 0.4897 0.4426

Next, 100 hash functions hi, i = 1, . . . , 100, are randomly
chosen from HE , and for each Sr in the mnist1k dataset, the
dataset-based collision ratio, denoted by CRhi

r , is computed.
CRhi

r is defined as the proportion of all pj,r in Sr which

7For Sr with less than 100 pairs of points, all pairs of points
in it are selected.
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Table 2: Samples of the dataset-based collision ra-
tios

r=0.4 r=0.5 r=0.6 r=0.7 r= 0.8

CRh1
r 0.8627 0.8203 0.5619 0.5066 0.4715

CRh2
r 0.6078 0.4922 0.4834 0.4407 0.3752

CRh3
r 0.6078 0.6953 0.5015 0.4515 0.4009

CRh4
r 0.6473 0.6172 0.5257 0.4539 0.4819

CRh5
r 0.7451 0.5781 0.4532 0.4204 0.4699

CRh6
r 0.7843 0.4766 0.5982 0.5353 0.4105

CRh7
r 0.6275 0.7422 0.4743 0.5101 0.4093

CRh8
r 0.6863 0.5781 0.5680 0.4958 0.4434

CRh9
r 0.9216 0.7031 0.4924 0.4240 0.4093

CRh10
r 0.4902 0.4453 0.5408 0.4826 0.4289

CRp
r 0.6836 0.6092 0.5442 0.4889 0.4437

stdev of CRh
r 0.1208 0.0725 0.0334 0.0150 0.0070

|Sr| 52 129 332 836 2493

collide over hi. Please note that the way in which CRhi
r

is calculated is totally different from CR
pj
r . The average

dataset-based collision ratio, denoted by CRh
r , is defined as

the mean of all CRhi
r , namely,

100∑
i=1

CRhi
r /100.

The collision ratios of 10 representative hash functions are
illustrated in Table 2. The average hash-function-based col-
lision ratios (CRp

r), the standard deviations of CRhi
r and the

number of pairs of points in Sr are also listed. From Table 2
one can see significant deviation of CRhi

r from CRp
r , which

justifies our claim in Observation 1 as CRhi
r and CRp

r are
good approximations of Prhi [r] and PrHE [r], respectively.
Another interesting fact that we can observe is that the

standard deviation of CRhi
r decreases as radius r becomes

larger, which is mainly caused by the varying sizes of Sr, r =
0.4, . . . , 0.8. The impact of the cardinality of dataset on
Prhi [r] will be evaluated further in Experiment 2 and Ex-
periment 3.
Recall that there is an intrinsic relation between Prhi [r]

and PrH[r] as proved in Theorem 1. In order to support
this claim, we plot the minimum and maximum dataset-
based collision ratios, namely, min(CRhi

r )) and max(CRhi
r )

∀i = 1, . . . , 100, CRh
r and CRp

r under different radii in Fig-
ure 5. As we can see from this figure, CRh

r and CRp
r almost

coincide for all radii, which experimentally validates Theo-
rem 1. Furthermore, the significant gap between the maxi-
mum and minimum CRhi

r bears out Observation 1 again.

4.4.2 Experiment 2
Recall that, in Section 3.5, we argue that the actual failure

probability will fluctuate around the value specified by users.
In this set of experiments, we will experimentally confirm
this argument with the dataset mnist1k.
Given a radius r, r = dmin+0.1, dmin+0.2, . . . , for each k,

k = 1, 2, . . . , the corresponding L value is calculated using
L = log1−PrH[r]kδ, where PrH[r] is computed using Equa-
tion (14) and δ is the pre-specified failure rate by users.
The measure, denoted by SRk,L

r , is the success ratio, name-
ly, the proportion of all pairs of points in Sr that collide over

at least one gj , j = 1, 2, . . . , L. Please note that small SRk,L
r

means high failure probability and vice versa.
For each k, we repeat the experiment 10 times and collect

the minimum, maximum and average SRk,L
r , respectively.

Due to space limitation, only some representative results are
reported in Figure 1, where the minimum, maximum and
average SRk,L

r as a function of k are plotted, with r = 0.4
and δ = 0.1. The values of 1− (1−PrH[r]k)L (the expected
SRk,L

r ) are also depicted since they may not be exactly equal
to 1 − δ due to the rounding of L. In other words, the
expected success ratio is 1 − (1 − PrH[r]k)L rather than
1 − δ actually. As we can see, there exists a significant
difference between the minimum and maximum SRk,L

r for all
k values. While SRk,L

r fluctuates around 1−(1−PrH[r]k)L,
its average, however, is considerably close to the expected
success ratio, which justifies our claim in Theorem 2. A
probabilistic interpretation of the above results is that the
success ratio, with which LSHC reports rNNs of a query, is
a probabilistic event itself!

4.4.3 Experiment 3
In this set of experiments, we repeat the last experiments

with more real datasets to show the impact of dataset char-
acteristics on the performance of LSHC .
Specifically, for each dataset (mnist10k, audio10k and col-

or10k), we first form a subset by randomly choosing 10% out
of this dataset, and then put another 10% out of the remain-
ing points into the subset, and so on and so forth until the
original dataset is exhausted. For each subset generated, we
repeat Experiment 1 and collect the same statistics as those
discussed in Section 4.4.1. Since the experimental results ex-
hibit similar trends with respect to different radii, we only
report some representative statistics here.
To demonstrate how Prh[r] is affected by the characteris-

tics of a dataset, the standard deviations of CRhi
r are collect-

ed. Due to space limitation, only the result for minist10K is
plotted in Figure 6. As we can see, the standard deviation at
the same radius drops gradually as the proportion of points
grows from 10% to 100%, which means that the larger the
cardinality of a dataset, the closer Prhi [r] is to PrH[r]. In
addition, when the proportion of data points is fixed, the
standard deviations at different radii are not identical, and
vary in different trends for these three datasets. For exam-
ple, when the proportion of points is set to 50% and r = 1.2,
the standard deviation is equal to 3.52× 10−4 for mnist10k,
whereas for color10k, it is boosted to 2.47× 10−2 drastical-
ly. This is because (1) for the same dataset, the numbers
of pairs of points in different Srs are not identical; (2) data
distributions of these three datasets are different, which in-
dicates that data distribution has an important impact on
Prhi [r] as well.

In sum, for the same dataset, the more (less) pairs of
points in an Sr, the smaller (larger) the variation in Prhi [r].
When the standard deviation becomes very small, i.e., less
than 10−3, most Prhi [r] will be very close (even almost i-
dentical) to PrH[r]. In that case, the actual performance of
LSHC will be considerably close to what is predicted by the
existing analysis method (although it is not correct). These
experimental results explain why the LSH algorithms work
very well in practice, which we believe is one main cause for
why such a gap exists for years.
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Figure 5: min(CRhi
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r ), CRh
r and CRp

r vs. r
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Figure 6: standard deviation vs. proportion of
points (mnist10k)

5. CONCLUSION AND FUTURE WORK
In this paper, we observe that a fundamental gap exists

between the LSH theory and the method for analyzing the
LSH algorithm performance, and develop a novel analysis
model to fill the gap between the LSH theory and practice.
We believe that there are many interesting directions wor-
thy of further investigation. A few quick examples include
how to determine optimal parameters for the LSH algorithm
under the proposed model, and is it possible to devise novel
randomized (approximate) algorithms for NN search with
provable constant failure probability.
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