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ABSTRACT
News sources generate constant streams of text with many
references to real world entities; understanding the content
from such sources often requires effectively detecting the ge-
ographic foci of the entities. We study the problem of as-
sociating geography to named entities in online documents.
More specifically, given a named entity and a page (or a set
of pages) where the entity is mentioned, the problem be-
ing studied is how the geographic focus of the name can be
resolved at a location granularity (e.g. city or country), as-
suming that the name has a geographic focus. We further
study dispersion, and show that the dispersion of a name can
be estimated with a good accuracy, allowing a geo-centre to
be detected at an exact dispersion level. Two key features
of our approach are: (i) minimal assumption is made on the
structure of the mentions hence the approach can be ap-
plied to a diverse and heterogeneous set of web pages, and
(ii) the approach is unsupervised, leveraging shallow English
linguistic features and the large volume of location data in
public domain.

We evaluate our methods under different task settings and
with different categories of named entities. Our evaluation
reveals that the geo-centre of a name can be estimated with
a good accuracy based on some simple statistics of the men-
tions, and that the accuracy of the estimation varies with
the categories of the names.

1. INTRODUCTION
In the past few years, there has been a growing interest in

both extracting entities from the web [9, 20] and associating
geographical descriptors to web resources [1, 3]. The two
lines of research point to an interesting but open issue of
identifying the associations between named entities and their
geographical boundaries in the web pages where the entities
are mentioned.

Many named entities have a geographic centre or focus
where the entity is better known or associated with; an or-
ganization may be tagged with a location where it is head-
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quartered in; an artist may be associated with his/her home-
town; a sport team may be identified by the location where
it is based in; and a disease may be associated with a loca-
tion where it is first reported. Sometimes a named entity
may be associated with multiple locations, but its mentions
in an article can often be traced to one location (usually the
one that is more relevant to the readership of the article).

Exploring this relationship between a named entity and
its geo-centre(s) has important implications. Knowing the
geography of the named entities that appear in the match-
ing pages of a query can help, for example, a search en-
gine to better localize the search [18] or diversify the re-
sults. When “Shubert Theater” is mentioned in the match-
ing pages of a query, knowing that the named entity refers
to the theater in New Haven, Connecticut, rather than the
one in New York City, may help an advertising system to
supply more relevant ticket information. The geography in-
formation about entities, once collected, can be used to an-
swer entity-based queries (e.g. “Where is entity X?”) and
location-based queries (e.g. “What is in location Y?”). The
geography information may also be used to disambiguate
entities in the same way it is used to disambiguate person
names in official oath and declaration documents (e.g. “I
<name> of <location> declare”).

Existing approaches on relation extraction [2] can only ex-
tract a relation between a named entity and a location when
they both appear in the same sentence or are linked using
some surface text patterns. Toponym resolution methods
(e.g. [15]) don’t usually have this restriction but can only
be applied when the named entity is a location.

Obtaining accurate and effective geographical information
for general named entities on the Web can be challenging for
several reasons. First, many different semantic relationships
can exist between a named entity and a location, and it is
not possible to bound the relationship to a sentence or some
predefined templates (e.g. headquarters and birth place [16]).
Second, there is a large variation in the scope and the geo-
graphical spread of named entities. While many entities are
only known in certain regions with limited boundaries (e.g.
municipal and provincial politicians, schools, small com-
panies and organizations, etc.), some entities with a large
spread may not be bounded to a city or a province (e.g.
federal ministers, heads of states, etc.). It should be noted
that entities that are better known globally may not have
a fixed geo-boundary; examples are well-known celebrities
(e.g. Lady Gaga), multi-national organizations and compa-
nies (e.g. ACM, McDonald), well-publicized products (e.g.
Macbook Air), etc; detecting such names or possibly geo-
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tagging them is out of the scope of this paper, but we can
imagine that one may compile a list of such names (given
that they are well-known) and totally avoid the problem
of geo-tagging. Finally, both entity and location mentions
in web pages can be ambiguous. For example, the term
“Springfield” by itself can refer to 30 different cities in the
USA and names like Houston and Dallas can be both person
names and place names.
Problem Formulation. In this paper, we study the prob-
lem of geo-tagging the mentions of named entities in web
pages. A problem that often arises in working with locations
is the overlap and inclusion relationships between locations
(e.g. Phoenix, Arizona, and USA); in our case, a geo-centre
can be at any or all of country, state or province, and city
levels. We assume these relationships are described in a tree
structure with an inclusion relationship between parents and
children. For example, the root of the tree may represent
the whole world, with the nodes in the second, the third and
the fourth levels representing respectively countries, states
and cities; such a tree is often referred to as a gazetteer. The
problem can then be formulated as:

Given the mentions of a named entity n in a document
or a set of documents P , and a tree structure of locations
(gazetteer), resolve the geo-centre of n, by identifying a node
or nodes in the tree that best represents the location of n in
document(s) P .

This is a document-centric view of a geo-centre, where the
orientation, and not the type, of a relationship is sought.
It may be treated as more general than a type-centric view
(e.g. [16, 5]) since the type of the relationship is not always
known or may not be important. Also defining a geo-centre
with respect to a document (or documents) can narrow down
the scope of the name and its geo-centre, making it less am-
biguous. For example, entities can have multiple and maybe
non-overlapping geo-centres (e.g. places of birth and work),
but the mentions of those entities in a given document(s)
may well focus on one aspect resolving in a single location.

We develop a probabilistic model that assigns geo-centre(s)
to a name based on the geo-centre of the pages that mention
it and the distribution of location references in the proximity
of the name. The model is unsupervised, and allows ambigu-
ity at the location level with the probability mass distributed
over all candidate locations. We evaluate our model and its
variations on a gold standard set of names with known geo-
centres and a set of pages that mention those names. Our
contributions can be summarized as follows.

• We formalize the problem of geo-tagging named entities
in documents and study the interactions between a geo-
centre and the spread.

• We propose a framework for detecting the geo-centre of
named entities cited in documents, based on a location-
aware generative model of documents.

• We devise an algorithm that estimates the dispersion of a
name, and show that a geo-centre can be detected at an
exact dispersion level.

• We evaluate our algorithms and formulations on a real
dataset composed of various classes of named entities and
their mentions in web pages, and report the performance
results, broken down to different algorithms and different
classes of named entities.

The remainder of this paper is organized as follows. Sec-
tion 2 presents both the model and an overview of our frame-

work. Extracting location candidates from web pages and
linking them with a gazetteer is addressed in Section 3. A
probabilistic framework for estimating the geo-centre at a
specified dispersion level is presented in Section 4 and eval-
uated in Section 5. We review related work in Section 6 and
conclude the paper in Section 7.

2. THE MODEL
Consider a document generative model with a vocabulary

V ; let V is partitioned into a set of location terms VL and
a set of non-location terms V − VL. Each document can
be generated with respect to a location, referred to as the
geo-centre of the document, to indicate the relevance of the
document content to the location. For example, the geo-
centre of a narrative story can be set in a place where the
events in the story take place; a news article may be gener-
ated with respect to the location of its readership. Given a
set D of documents and a named entity n, the probability
that document d ∈ D generated in the context of a location
l ∈ VL mentions a named entity n can be written as

P (d|l, n) =
P (l|d, n)P (d|n)

P (l|n)
. (1)

As a geo-centre of named entity n in document d, we want
to estimate P (l|d, n). The language model establishes a re-
lationship between the probability of generating a document
and the probability that l is a geo-centre of n in that docu-
ment, but we still need to make some assumption to do our
estimation. One hypothesis is that each named entity men-
tioned in a document inherits the geo-centre of the document,
i.e. P (l|d, n) = P (l|d). We refer to this as the inheritance
hypothesis. Based on this hypothesis and using maximum
likelihood estimation, the probability of generating l under
a unigram model is

P̂ (l|d, n) =
tfl,d∑

l′∈VL
tfl′,d

(2)

where tfl,d is the frequency of location term l in d. Not
all named entities mentioned in a document inherit the geo-
centre of the document. Also long documents may have mul-
tiple geo-centres and only one of those may be relevant to
a named entity. Our second hypothesis, referred to as near-
location hypothesis states that the geo-centre of a named en-
tity must be mentioned in nearby text. This has to be in-
terpreted in the context of the first hypothesis in that when
a named entity does not inherit the geo-centre of the page,
it is expected to be qualified explicitly with a geo-centre;
otherwise the named entity can be ambiguous 1. For exam-
ple, an article published in San Francisco Chronicle can cite
names which are not related to the geo-centre of the article
or the newspaper and those names can be ambiguous if not
explicitly qualified. Section 4.1 gives an estimate based on
this hypothesis and looks into ways of combining the two
estimates.

2.1 Hypothesis testing
The two hypotheses need some verification. For this pur-

pose, we randomly selected 30 headline articles from six dif-
ferent newspaper websites in North America; each news-
paper had a regional focus which was also expected to be

1This rule may not hold for more global names with no
fixed geo-centre, but tagging those names is out of the scope
of this paper



the focus of the published articles. We manually inspected
each named entity tagged as Person or Organization by
the Stanford Named Entity Recognizer [11], and excluded
9 named entities that either did not appear to have a re-
gional orientation, or the geo-centre spanned over more than
one country 2. The remaining 162 named entities had their
geo-centres mentioned in the same pages, and accordingly a
geo-centre was assigned to each. We then placed each named
entity into one or more of the following three bins, based on
the relation between the named entity and its geo-centre:
A) The named entity inherits the geo-centre of the page; B)
In the same sentence where the named entity is mentioned,
either the geo-centre of the named entity is mentioned, or
there is a name with the same but known geo-centre men-
tioned; C) The named entity has a geo-centre, but neither
A nor B holds. Note that a named entity can be placed in
both bins A and B.

Among the 162 names analyzed, there were 51 (31.5%)
placed only in bin A; 44 (27.2%) placed only in bin B; and
65 (40.1%) placed in both bins A and B. In other words, in
71.6% of the cases the named entity inherits the geo-centre
of the page, supporting our inheritance hypothesis. In
67.3% of the cases the geo-centre (or a name with the same
but known geo-centre) is mentioned nearby, which can be
treated as an evidence supporting our near-location hy-
pothesis. Only 2 of 162 (1.2%) cases did not fall into any
of the bins A and B.

Based on this and other evidence, one can observe that
the two hypotheses are capturing the intrinsic rules for in-
troducing a named entity with certain regional orientation
adopted by most of the newswire article writers. We are
not expecting the same level of agreement in general web
pages, and this is an area where more studies are perhaps
needed. That said, we assume the writers and editors of
non-newswire web pages more or less follow the same or
similar guiding rules and principles; this is also consistent
with the findings that document features may be beneficial
in disambiguating location names [17].
Overview of the framework Our framework consists of
three stages. First, locations mentioned in each page are ex-
tracted and translated into canonical forms. For example, a
mention of Edmonton is translated into Edmonton, Alberta,
Canada or other locations3 depending on its context. Such
preprocessing addresses the problem of location ambiguity
in web pages and has been successfully used in the past [1,
14]. Second, a geotagging of the named entity is performed
at one of city, state or country levels, using our models and
based on the clues gathered in the previous stage and pos-
sible relationships to the named entity. Finally, one of the
city, state and country levels is selected as the exact level
for the geo-centre of the named entity, based on the results
for each level in the second stage.

3. FINDING CANDIDATE LOCATIONS
As our geotagging is based on the mentions of a target

named entity and candidate locations in web pages, extract-
ing accurate location information plays a crucial role in the

2The excluded names are Lorna Morello, Alex Vause,
NHL, UN Security Council, United Nations, Red Cross, In-
ternational Energy Agency, Jupiter, and Kepler.

3http://en.wikipedia.org/wiki/Edmonton
(disambiguation)

performance of the whole work. The source of a web page
often contains HTML tags and potentially scripts that are
not exploited by our framework. We use the Keep Every-
thing Extractor in the boilerpipe library4 [12] to extract the
full text of the pages.

3.1 Mentions extraction
To extract mentions of locations, we use the Stanford

Named Entity Recognizer to tag potential locations in text.
A side effect of running the recognizer is that the text is tok-
enized into a sequence of terms. A mention is a subsequence
of this sequence described by the indices of its first and last
terms. In this work, we extract three kinds of mentions:
Mentions of a target named entity. Similar to text, the
target named entity is tokenized, and its mentions in text
are identified.
Mentions of locations. We consider consecutive terms
tagged as Location by the named entity recognizer as men-
tions of locations. We will explain the disambiguation of
these mentions in Section 3.2.
Mentions of adjectival and demonym forms of loca-
tions. We collect the adjectival forms of countries 5 and
states in the U.S. 6. Mentions matching these forms are
resolved to the corresponding locations (e.g., mentions of
Canadian are considered the same as mentions of Canada).
The matching rules for mentions of a target named entity
apply here.

Note that we do not allow the mentions to overlap (e.g.
Edmonton Oilers and Edmonton, both at the same offset).
The extraction is done in the order described above, which
implies that we ignore potential locations and demonyms
embedded in the target named entity. It should be noted
that such location mentions inside a named entity are useful
clues that should be exploited. However, we decided against
using them in our experiments for two reasons: (1) to report
performance results that are less dependent on the selection
of the entities, and (2) to possibly underestimate (but not
overestimate) the performance of our system.

3.2 Location disambiguation
An extracted mention of a location can be ambiguous,

meaning that it may not refer to a unique location, for ex-
ample, in a gazetteer.

Location disambiguation (and similarly toponym resolu-
tion) is out of the scope of this work, and any relevant
method from the literature may be used. A well-cited work
is that of Amitay et al. [1], which applies a set of rules (e.g.,
checking if a location is qualified by another location) to
assign a confidence score to each resolved location. We de-
cided to implement our own method since we were not sure
how the weights could be assigned to different locations in
Amitay et al.’s work. In particular, for each mention of
a possible location (tagged by the NER tool), we search
the text of the mention (this can be a multi-word term) in
a database of geographic entities 7; the database has the
canonical description of each location and is structured as a
tree to describe the containment relationships between loca-

4https://code.google.com/p/boilerpipe/
5http://en.wikipedia.org/wiki/List of adjectival and

demonymic forms for countries and nations
6http://en.wikipedia.org/wiki/List of demonyms for U.

S. states
7This was the Geoname database in our setting.
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tions. Our search returns a list of possible matches, ordered
based on population, with the top k selected as candidates 8.

Given an unresolved location with surface text s (e.g.,
Edmonton), its set of mentions M(s), and a set of location
candidates L, a confidence score for that location li ∈ L
resolves s is defined as

DS(li, s) =
∑

c∈C(li)

∑
mc∈M(c)−M(s)

max
ms∈M(s)

1

DM (ms,mc)
,

where C(li) is the set of constituent terms of li. For ex-
ample, the constituent terms of the city of Edmonton in
Alberta, Canada are Edmonton, Alberta, and Canada. We
enumerate over all constituent terms of a location and for
each constituent c, we look for each of its mentions mc in
the page. If mc is not a mention of s, we treat mc as a
clue to resolve s. For example, Alberta is a clue to resolve
Edmonton.

To account for the distance between mentions and that
near mentions are more important, the contribution of mc is
calculated as the reciprocal of the minimum term distance
between mc and the mentions of s. The term distance is
formally defined as the number of terms that fall between
two mentions, i.e.

DM (m1,m2) = min{|t(m2)− s(m1)|, |t(m1)− s(m2)|}.
(3)

where s(m) and t(m) respectively denote the start and the
end indexes of mention m. By the one-sense-per-discourse
principle, we resolve all mentions of s to the canonical lo-
cation l that has the maximum confidence score DS(l, s)
for l ∈ L. In case of a tie, the most populated candidate
location is chosen, as done in some early work [1].

4. DETECTING GEOTAGS
Given a named entity, a collection of relevant pages with

mentions of the named entity, a set of disambiguated loca-
tions in each page as candidates, we are set to determine the
most relevant location of the target named entity. A caveat
is that not all locations are at the same level of dispersion
and because of the containment and overlap relationships
between locations, a comparative ranking may not be pos-
sible. In this section, we first assume a level of dispersion is
known or given, thus all candidate locations are at the same
level of dispersion (e.g. city). Having developed a solution
under this setting, we then address the problem of detecting
a right level of dispersion for a named entity.

4.1 Geotagging at the city level
We start geotagging at the lowest level of dispersion, i.e.

the “city” level in our gazetteer. This is due to the fact that
for geotagging at higher levels such as country or state, one
should not ignore the lower-level locations such as city and
that the mentions of such locations support the higher-level
locations they belong to.

Our hypotheses, as given in Section 2.1, specify two sources
where the geo-centre of a named entity can be identified. Ac-
cordingly, we propose two models for geotagging a named
entity, each tapping into one of these sources, before com-
bining them into a single model.
Inheritance based model of geo-centre Our inheritance
hypothesis suggests a method for estimating the geo-centre

8In our experiments, k is set to 5.

of a named entity, provided that the geo-centre of the page
that mentions the named entity is known. Any page geo-
tagging method can be used here (as some reviewed in Sec-
tion 6), and our maximum likelihood model in Equation 2
also provides a way to estimate a geo-centre. In a simple
evaluation of this estimate, we used the 30 headline articles
reported in Section 2.1 and assigned a geo-centre to each
based on a manual inspection. The assignment took into
account the relevance of the events reported in the page and
the expected readership of the page. We found that in 21
of the 30 cases the geo-centre of the page was the location
where the newspaper was published. And among these 21
pages where we were sure of their geo-centres, we found that
in 15 pages (71%), the location identified by the model was
either the geo-centre or part of the geo-centre of the page.
Based on this observation and the hypothesis that named en-
tities inherit the geo-centre of the page that mentions them,
a geo-centre for named entities can be identified.
Near location based model of geo-centre Our study, as
reported in Section 2.1, showed that in 67.3% of the cases the
geo-centre is mentioned near the named entity in the same
sentence for purposes such as introduction and disambiguat-
ing the named entity, following our near-location hypothesis.
A document cannot always be broken down into sentences
especially if it is not a well-written piece of text; a better
way of describing this relationship is in terms of the distance
between the mentions of a candidate location and a named
entity.

Given a document d, a named entity nmentioned in d, and
a set L of locations that are also mentioned in d, P (l|d, n)
can be estimated as

P̂ (l|d, n) =

1
DE(l,n)∑

l′∈L
1

DE(l′,n)

, (4)

where DE(l, n) is the minimum term distance between men-
tions of l and n, referred to as Entity Distance. The rele-
vance scores are normalized to a number between 0 and 1,
so they can be interpreted as probabilities.

The Entity Distance between two named entities n1 and
n2 can be defined as

DE(n1, n2) = min
m1∈M(n1),
m2∈M(n2)

DM (m1,m2), (5)

where DM (m1,m2) is the term distance between mentions
m1 and m2, as defined in Eq. 3, and M(n) is the set of
mentions of an entity n.
A mixture model A problem in using any single model is
that we are not certain if the premise of the model holds. For
example in our case, we don’t know if a named entity inherits
the geo-centre of the page or not. One way to address this
is to use some sort of a mixture model. A question to be
addressed here is what should be the mixture model and how
the two models should be weighted. Let P̂inh(l|d, n) be the
estimate obtained using the inheritance model (as defined in

Eq 2) and P̂near(l|d, n) be the estimate obtained using the
near-location model (as in Eq 4).

Consider the extreme case where the values of P̂near(l|d, n)
are evenly distributed for every location l mentioned in d;
this suggests that either the name does not have a unique
geo-centre or a unique geo-centre cannot be identified us-
ing P̂near(). Under this setting, two questions that arise
are: (1) how much should we rely on these values when the



name actually has a clear geo-centre? (2) Can we opt for
another measure which can provide a larger margin between
the probabilities?

As a measure of the non-uniformity of the ranks and to
indicate that one or more locations stand out from the rest
in document d, we introduce J(d, n) which is defined in Eq. 6
in terms of the Shannon Entropy of the vector induced by
P̂near(l|d, n) for different values of l. The non-uniformity

here is based on our near-location model P̂near. H(d, n),
as defined in Eq. 7, is the distance-based entropy of the
probabilities distributed over the cities mentioned in d, and
Hmax(p) is the maximum entropy over locations in d, which
is log |L|, achieved when all locations have the same proba-
bilities.

J(d, n) = 1− H(d, n)

Hmax(d)
= 1− H(d, n)

log |L| (6)

H(d, n) = −
∑
l∈L

P̂near(l|d, n) log P̂near(l|d, n) (7)

When the gap between the maximum probability and the
second largest probability is large, H(d, n) is small and J(d, n)
is close to 1, indicating a strong tendency toward the model
that is based on term distance for correctly capturing the
geo-centre. Conversely, J(d, n) is close to zero when the en-
tropy value approaches its maximum, meaning that the top
values of P̂near(l|d, n) are close and the model may not be
effective in detecting a geo-centre.

Now a combined model can be written as the mixture:

P̂ (l|d, n) = J(d, n) · P̂near(l|d, n) + (1− J(d, n)) · P̂inh(l|d, n).
(8)

The first term of the mixture characterizes the joint proba-
bility of two events: 1) the near location based model pro-
vides a correct estimate with probability J(d, n); 2) l is the
geo-centre, estimated by the near location based model with
probability P̂near(l|d, n). The second term of Eq. 8 charac-
terizes the situation where the near location based model
cannot capture a unique geo-centre, and the target named
entity inherits the geo-centre of the document.

It is noteworthy that we have experimented with other
models as well, such as replacing J(d, n) with an inheritance-
based entropy; some of these variations are reviewed and
evaluated in Section 5.3.

4.2 Geotagging at higher levels
The problem of geotagging arises not only at the city level,

but also at higher levels for names that are more widely
known. To find out the geo-centre of a named entity n at,
say the state level, we consider both the mentions of cities
and states (provinces) in the page.

An aggregation of the scores at city and state levels can
be done in two steps. First, the mentions of both state-level
and city-level locations are considered and the relevance of
each location is estimated based on the proposed models
in Section 4.1. Specifically, the relevance is computed over
the union of city and state level locations as the domain
of discourse. Second, for each state level location ls, the
relevance score of the cities that belong to ls are added to
the state-level score; this give a relevance score that ls is the
geo-centre of n at the state level. If a state level location is
not mentioned in d, but its cities are mentioned, its score will
be the sum of its cities’ score. The relevance score can be

computed using any of the models presented in Section 4.1.
One can verify that the relevance scores for all state-level
locations sum up to 1, forming a probability distribution.

We can easily generalize this method to even higher lev-
els, such as country, by propagating the probability mass of
states and cities to that of the countries they are located in.

4.3 Corpus aggregation
Given a named entity n and a set of relevant documents

D, one may treat each document as an independent evidence
with equal weight. Under this setting, the probability that
location l is the geo-centre of n, namely P̂ (l|n), can then be

measured as the expectation of P̂ (l|di, n) for di ∈ D, i.e.

P̂ (l|n) =
1

|D|
∑
di∈D

P̂ (l|di, n). (9)

Assuming that the geo-centre is unique, the location with
the maximum value of P̂ (l|n) can be declared as the geo-
centre of n.

4.4 Location refinement
When the probability distribution of a named entity is

known at the country level, we can use it as a priori for
the estimation of the state-level geo-centre. The underlying
assumption is that the probability of a location to be the
geo-centre at a fixed level of dispersion can be affected by
the mentions of its parent locations in the tree structure of
locations. Let ct, st and cn be locations at city, state and
country levels respectively, and st be the parent of ct and
cn be the parent of st. Taking the prior information into
account, the geotags at state and city levels may be refined
as P̂ (cn|n) · P̂ (st|n) and P̂ (st|n) · P̂ (ct|n) respectively.

4.5 Detecting the dispersion level of a name
We have so far assumed that a level of dispersion is either

known or given, and now we want to relax this condition and
determine most suitable level of dispersion for a given named
entity among the three levels: city, state, and country.

Inspired by the idea that the geo-centre is more likely to
be unique at the desired level of dispersion, we aim to find
v ∈ {city, state, country} that maximizes the expectation of
Jv() over the set of documents D, i.e.

arg max
v

1

|D|
∑
di∈D

Jv(di, n). (10)

Jv(), as defined in Eq. 6, measures the probability that a
unique geo-centre can be detected at level v and is assessed
in terms of P̂ () with L set to the locations at level v; but it

can as well be measured in terms of P̂inh() or P̂near() (and
we evaluate them in our experiments).

5. EXPERIMENTS AND EVALUATION
We evaluate the performance of our algorithms in terms

of the accuracy of the results on various datasets. Our eval-
uation includes geotagging at city, state and country levels
and on the basis of the mentions of a name in a single page
or a set of pages. In each case, we present a comparison of
our results to a few baselines.

5.1 Gold standard datasets
A full coverage of all kinds of named entities is not real-

istic, hence we focus on three sets of proper names that are



common in web pages: names of “persons”, “locations” and
“organizations”, according to MUC-69 types.

The first set consists of person names with a geographic
boundary at the granularity of country, state, or city. As
politicians usually have a clear level of administration, we
can obtain the geo-centre of politicians with high confidence.
We collected names of heads of states in the world10 into
the set of country level politicians, where the country of the
politician is the ground truth. We also collected names of
politicians in Canada. Names of governors11 and party lead-
ers12 of provinces and territories are categorized as names
at the state/province level. Names of city mayors13 and
councillors14 are categorized as names at the city level.

The second set is the names of implicit physical loca-
tions, which are usually tagged as location named entities
by named entity recognition tools. These kinds of names are
very indicative of the location information, especially with
the common use of social networks on mobile phones, where
user posts often contain these names. Understanding the
city level geo-centre of these names is important. To evalu-
ate the performance of our geotagging framework on implicit
physical locations, we collected the names of museums, the-
atres and towers in the United States. We considered the
city where each entity was located as the geo-centre of the
entity. The location of an entity was determined based on its
longitude/latitude information from the Geonames database
and through mapping the longitude/latitude pairs into cities
with the Google Map API15.

The third set is the names of organizations, including uni-
versities, sports teams and technology companies. Names of
universities and their locating cities were extracted from the
list of Top 100 U.S. Universities by U.S. News16. Names and
home cities of sports teams of four major sport leagues in the
North America (NHL, NBA, MLB and NFL) were extracted
from the official website of each league. From CrunchBase17

we collected names of technology companies founded after
2008 with Series C funding (which means they are likely to
be known by the public) and their headquarters at the city
level. Similar to the implicit physical locations, we consider
the city where an organization is located as the geo-centre
of that organization.

Our dataset consisted of 101 theaters, 100 museums, 100
towers, 100 universities, 204 companies, 123 sport teams and
125 politicians. For each collection of names, we gathered re-

9http://cs.nyu.edu/faculty/grishman/muc6.html
10http://en.wikipedia.org/wiki/List of current heads of

state and government, visited on Mar 11, 2014
11http://en.wikipedia.org/wiki/Provinces and

territories of Canada, visited on Sep 10, 2013
12http://www.parl.gc.ca/Parlinfo/compilations/

ProvinceTerritory/PartyStandingsAndLeaders.aspx, visited
on Sep 10, 2013

13http://www.fcm.ca/home/about-us/
big-city-mayors-caucus.htm, visited on Sep 10, 2013

14http://www.edmonton.ca/city government/city
organization/city-councillors.aspx, visited on Sep 10,
2013

15https://developers.google.com/maps/documentation/
geocoding/#ReverseGeocoding, visited on Dec 30, 2013

16http://colleges.usnews.rankingsandreviews.com/
best-colleges/rankings/national-universities/, visited
on Jan 11, 2014

17http://crunchbase.com/search/advanced/companies/
2144281, visited on Dec 30, 2013

lated pages from December 2013 to March 2014 by searching
the names in the search engine Exalead18 with the names as
queries. For each name, (up to) the top 30 pages returned
by the search engine are used to build our dataset. The
dataset used in our experiments is all available online 19.

5.2 Evaluation settings
Based on the data reported in Section 5.1, we collect pages

that mention both a target named entity and its ground
truth location in one of the city, state or country levels. Un-
like a city-level geotagging where the ground truth is ex-
pected to be mentioned at the city level, our state- and
country-level geotagging may include pages that mention
the ground truth at lower levels only. Furthermore, in our
geotagging of page corpora, where we want to evaluate the
ability of our algorithms in aggregating the results of differ-
ent pages, we drop a corpus if it contains less than 5 pages
simply because a comparison between different strategies is
less meaningful.

For the task of geotagging with single pages, each page is
considered as a data point and for geotagging at the corpora
level, each corpus of a named entity is considered as a data
point. For each data point, if the geo-centre estimated by an
algorithm matches one of the ground truth locations of the
target named entity, we treat the answer correct. With this
setting, we can compute the accuracy by dividing the num-
ber of correct answers, denoted by Tc, by the total number
of data points in the dataset, denoted by T :

Accuracy =
Tc

T
. (11)

5.3 City level geotagging with single pages
Our city-level experiments evaluate the performance of

the models proposed earlier as well as a few baselines, as
reported here. The uppercase letters in the parentheses are
the short names used in Table 1a to refer to the models.

• Random (RAND): The random model assigns equal
probabilities to all candidate locations in a page. This
model is used for sanity check and to assess the perfor-
mance of other models against chance.

• Frequency (FREQ): This is the model defined in Eq. 2;
it is based on the hypothesis that named entities inherit
the geo-centre of the page where they are mentioned.

• Term Distance (TD): This is the model defined in
Eq. 4, which is based on the principle that nearby names
tend to share a common orientation. This model also
serves as a baseline disambiguation model in the style of
Lesk’s word sense disambiguation [13].

• Mixing by Multiplication (MM): This model is based
on the following two events: (1) the geo-centre appears
near the target named entity and (2) the named entity
inherits the geo-centre of the page. Assuming indepen-
dence, the model takes the probability of the conjunction,
i.e. the product of the values of Eq. 2 and Eq. 4.

18The engine (http://www.exalead.com/search/web/)
was selected since it did not block our queries unlike more
well-known engines and also because of the simple ”keyword-
in-document” model of our queries.

19http://www.cs.ualberta.ca/˜drafiei/datasets/
geotagging

http://cs.nyu.edu/faculty/grishman/muc6.html
http://en.wikipedia.org/wiki/List_of_current_heads_of_state_and_government
http://en.wikipedia.org/wiki/List_of_current_heads_of_state_and_government
http://en.wikipedia.org/wiki/Provinces_and_territories_of_Canada
http://en.wikipedia.org/wiki/Provinces_and_territories_of_Canada
http://www.parl.gc.ca/Parlinfo/compilations/ProvinceTerritory/PartyStandingsAndLeaders.aspx
http://www.parl.gc.ca/Parlinfo/compilations/ProvinceTerritory/PartyStandingsAndLeaders.aspx
http://www.fcm.ca/home/about-us/big-city-mayors-caucus.htm
http://www.fcm.ca/home/about-us/big-city-mayors-caucus.htm
http://www.edmonton.ca/city_government/city_organization/city-councillors.aspx
http://www.edmonton.ca/city_government/city_organization/city-councillors.aspx
https://developers.google.com/maps/documentation/geocoding/#ReverseGeocoding
https://developers.google.com/maps/documentation/geocoding/#ReverseGeocoding
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/
http://crunchbase.com/search/advanced/companies/2144281
http://crunchbase.com/search/advanced/companies/2144281
http://www.exalead.com/search/web/
http://www.cs.ualberta.ca/~drafiei/datasets/geotagging
http://www.cs.ualberta.ca/~drafiei/datasets/geotagging


• Mixing by Addition (MA): This model is also based
on the two events described for MM, except that the mix-
ture model is defined as the mean of the two probabilities.

• Mixing based on the frequency entropy (MFE):
It is similar to the definition in Eq. 8, with the differ-
ence that the non-uniformity J(d, n) is computed based

on P̂inh(l|d, n) instead of P̂near(l|d, n).

• Mixing based on distance entropy (MDE): This is
our proposed model in Eq. 8.

The results are shown in Table 1a. The scores in bold in-
dicate the best accuracy achieved among all the models for
the corresponding category. The model based on frequency
alone (FREQ) achieves the best performance on Sports Teams
with an accuracy of 0.585. It is noteworthy that the surface
text of named entities in the sports category often include
the home city or state of the team. We ignore this infor-
mation to evaluate the ability of our approach for capturing
other clues of the geo-centres mentioned in the page. Be-
cause of this setting, when estimating the geo-centre of a
team, it may be more promising to look for clues from the
page geo-centre than finding locations nearby, as the home
location is less likely to be mentioned again nearby.

However, FREQ does not perform well on other categories
especially on the category of technology company names,
with an accuracy of only 0.370. An examination of the pages
revealed that many of the pages related to a company are
focusing on the business end of the company. As the com-
panies in our dataset are about technology, their business
might not be limited to the areas of their home offices, and
this makes it less likely for the main topic of the page to have
a strong location indication. Instead, the geo-centre is often
mentioned near the mention of the company name for read-
ers to gain knowledge about the company’s location, which
is indicated by the results of the model TD, whose accuracy
(0.630) is the best among those investigated.

As we can see, models that are only based on the term
distance or frequency may perform well in one category but
bad in another. In contrast, the mixed models are more
balanced. For categories of landmark names (theatres, mu-
seums, towers, and universities 20) and person names (politi-
cians), MA, MM, MFE and MDE are superior to the other models.

Among these mixed models, MDE is a robust one. It has
the highest overall accuracy and performs the best in the
categories of museums and towers. In our other categories,
its performance is also comparable to the best ones. Con-
versely, the remaining three mixed models all fall behind MDE

in the categories of towers and sports teams. The model MFE
achieves an accuracy of 0.628 (the second best) in company
names but falls short in sports teams (0.447) and towers
(0.609) when compared with the other three mixed mod-
els. The model MM has a close performance compared to the
model MDE, but falls 2.3% behind in the category of sports
teams, which amounts to 21 pages in 899 pages.

Overall we find that the relation between the mentions
of named entities and geo-centres should be modelled us-
ing both the term distance and the frequency, and that one
measure may play a more important role when the other
measure cannot estimate the geo-centre with a good con-
fidence. The experimental results show that the proposed

20A university can be considered both as a landmark or
an organization.

model MDE defined by Eq. 8 is more reliable than the others.
Hence we will use it in the rest of our reported experiments.

5.4 State level geotagging with single pages
We experimented with our proposed algorithm as well as

a series of baselines for state level geotagging with single
pages. All algorithms leverage the probabilistic model MDE
to assign initial probabilities to the candidate locations, with
different aggregation approaches explained below.

• States only (S): As the name suggests, only the state
names are plugged into the model MDE for ranking. In
other words, this model treats state names as abstract
terms and does not take into account possible contain-
ment relationships between state names and city names
mentioned in the same page.

• Cities only (C): Each state is defined in terms of the
cities that it contains, hence the probability of each city
in a page is assessed using the model MDE, and then the
probabilities of cities in the same states are added up to
form a probability distribution for states. The ranking of
states is determined by these new probabilities.

• Maximum of S and C (MSC): For each state-level
location and its probabilities given by algorithms S and C

described above, the algorithm MSC takes the maximum
and divides it by two to maintain a valid probability dis-
tribution over the candidate locations.

• Average of S and C (ASC): This algorithm is similar
to MSC. The difference is that we take the mean of the
probabilities given by S and C.

• Analyzing mentions of states and cities simulta-
neously (AMS): This is the proposed algorithm in Sec-
tion 4.2.

Table 1b reports the accuracy of applying each algorithm
to different categories. We can see that the algorithm that
only considers mentions of cities (C) performs better than
the one that only analyzes mentions of states (S) in cate-
gories of theaters, universities, companies, sports teams and
politicians, which suggests that city level locations play a
significant role even in geotagging at the state level.

The above results show that our proposed algorithm (AMS)
outperforms the baselines in all categories. The reason for
this difference in performance can be probably explained as
follows: 1) Either C or S only considers one level, which is less
thorough compared to AMS; 2) When the numbers of men-
tions at different levels are not balanced, the baselines MSC

and ASC may overestimate the relevance for a location whose
level has few candidates, while the proposed algorithm AMS

keeps such difference by distributing original probabilities to
both levels simultaneously.

We can also see that there is quite some gap between
the accuracy of our proposed algorithm (AMS) and that of
MSC and ASC in all categories except the category of muse-
ums. This is because of the fact that when the numbers of
mentions at different levels are not balanced, the algorithms
MSC and ASC can overestimate the probability for a location
whose level has few candidates and this can lower their ac-
curacy. On the other hand, AMS keeps such difference by
distributing original probabilities to both levels simultane-
ously. We will use AMS as our algorithm of choice in the rest
of our experiments.



Table 1: Accuracy of geotagging with single pages using different models.

(a) City level

RAND FREQ TD MA MM MFE MDE
Theater 0.230 0.597 0.752 0.755 0.757 0.750 0.745
Museum 0.190 0.601 0.645 0.691 0.689 0.673 0.694
Tower 0.228 0.620 0.549 0.641 0.663 0.609 0.696
University 0.238 0.572 0.664 0.694 0.713 0.677 0.692
Company 0.306 0.370 0.630 0.626 0.626 0.628 0.623
Sports
Team

0.187 0.585 0.370 0.532 0.539 0.447 0.562

Politician 0.239 0.836 0.838 0.890 0.881 0.860 0.883
Overall 0.225 0.594 0.606 0.672 0.677 0.638 0.681

(b) State level

S C MSC ASC AMS
Theater 0.575 0.765 0.773 0.775 0.844
Museum 0.806 0.819 0.873 0.878 0.904
Tower 0.778 0.772 0.820 0.827 0.877
University 0.621 0.746 0.730 0.743 0.807
Company 0.366 0.652 0.566 0.571 0.673
Sports
Team

0.345 0.589 0.472 0.483 0.598

Politician 0.618 0.751 0.805 0.803 0.869
Overall 0.564 0.718 0.702 0.708 0.782

5.5 Aggregating results of different pages
For each named entity and its set of relevant pages, we

experiment with a few algorithms to aggregate the scores
from individual pages. In particular, we evaluate the fol-
lowing baselines in addition to the algorithm proposed in
Section 4.3.

• Maximum probability of the location (MP): This
model is based on the assumptions that (1) at least one
page can correctly resolve the geo-centre of a name and
(2) a correct geo-centre has the highest rank among can-
didates. Thus, candidate locations are ranked based on
their maximum probabilities in the set of relevant pages.

• Number of pages that mention the location (NP):
This algorithm counts the number of pages that a candi-
date location is mentioned and ranks the locations in a
descending order by these frequencies.

• Product of MP and NP (MP·NP): Candidate loca-
tions are ranked based on the product of the values in
MP and NP. The intuition is that the geo-centre should
be mentioned in many pages and in some pages it should
be ranked high by our page-level geotagging.

• Product of probabilities (PP): This algorithm con-
siders each di ∈ D as a test for the event that a candidate
location l is the geo-centre, whose probability is defined
as P̂ (l|di, n). The product of P̂ (l|di, n) for di ∈ D mea-
sures the joint probability of a location passing all the
tests, assuming independence between documents in D.
For smoothing, let λ be be the minimum positive value
of P̂ (l|di, n) for all di ∈ D and l. When a location is
not mentioned in a document, we use λ as the probabil-
ity instead. Locations are then ranked according to the
following quantity:

P̂PP (l|n) =

|D|∏
i=1

max{P̂ (l|di, n), λ}

 1
|D|

. (12)

• Average of probabilities (AP): Locations are ranked
according to Eq. 9.

The results for the city and the state levels are respec-
tively shown in Table 2a and Table 2b. We can see that
the algorithm MP, which takes the maximum of page-level
probabilities, has the worst performance. This is because
by taking the maximum the results only reflect the charac-
teristics of one page. But in other algorithms this problem
is alleviated by using metrics that capture characteristics of
all pages.

From Tables 2a and 2b we can also see that the algorithms
AP and PP achieve the best overall results. They outperform
the other methods in all categories, which suggests that the
relevance of a location measured in single pages can be effec-
tively combined under the assumption of these two models
(i.e. the independence assumption in PP and the equal im-
portance assumption in AP).

Since AP is comparable to PP in terms of the city level
geotagging and performs slightly better at the state level,
we select AP as our algorithm for aggregating the results of
different pages.

5.6 Location refinement
In Section 4.4, we proposed a refinement for adjusting the

probability of a location by taking the probability of its par-
ent location as a priori. Table 3 compares the accuracy with
and without this refinement step in different categories, us-
ing AP for aggregating results from different pages. We can
see that there is no clear winner between the two methods.
The refined method has a relatively higher accuracy at the
city level but performs worse at the state level. An explana-
tion is that we have been already exploiting the containment
relationships between locations in our location disambigua-
tion (Section 3.2), and using the same relationship again
does not provide additional evidence to further refine the
locations.

5.7 Selecting the most relevant level
This experiment is conducted on politicians (see Sec. 5.1)

for the reason that a politician has a clear dispersion in terms
of their serving regions. Similar to our previous experiments
on a corpus, we removed names with less than 5 relevant
pages, resulting in 44 names at the city level, 30 at the state
level and 32 at the country level.

The performance is measured in terms of accuracy, as de-
fined in Eq. 11, where T is the total number of names and
Tc is the number of names for which our algorithm correctly
identifies the geo-centre at the exact level of dispersion.
Methods We experiment with the algorithm given for de-
termining the level of dispersion in Section 4.5 as well as a
few baselines. The details are illustrated below. Unless it is
stated otherwise, v ∈ {city, state, country}.
• Total Locations (TL): This model assumes the most

relevant level is dominant. For a page Pi, let the number
of distinct locations at level v be TL(i, v). This method
adds up the values of TL for all pages at each level. Then
the level with the most distinct locations is chosen:



Table 2: Accuracy for geotagging with document corpora using different aggregation methods.

(a) City level

MP NP MP·NP PP AP
Theater 0.426 0.660 0.723 0.745 0.745
Museum 0.349 0.619 0.651 0.651 0.603
Tower 0.341 0.488 0.488 0.537 0.512
University 0.444 0.819 0.806 0.833 0.819
Company 0.286 0.610 0.638 0.619 0.648
Sports Team 0.480 0.730 0.810 0.810 0.830
Politician 0.567 0.900 0.900 0.933 0.933
Overall 0.400 0.683 0.716 0.725 0.725

(b) State level

MP NP MP·NP PP AP
Theater 0.632 0.816 0.842 0.803 0.842
Museum 0.725 0.900 0.900 0.912 0.912
Tower 0.743 0.843 0.843 0.843 0.857
University 0.744 0.919 0.930 0.942 0.942
Company 0.145 0.803 0.821 0.829 0.855
Sports Team 0.553 0.860 0.825 0.877 0.904
Politician 0.580 0.884 0.884 0.913 0.899
Overall 0.559 0.858 0.859 0.873 0.887

Table 3: Accuracy for geo-centre estimation in document
corpora with and without the location refinement.

City level State level
Category AP AP Refined AP AP Refined
Theater 0.745 0.745 0.842 0.842
Museum 0.603 0.651 0.912 0.912
Tower 0.512 0.537 0.857 0.857

Company 0.819 0.833 0.942 0.942
Sports Team 0.648 0.667 0.855 0.872
University 0.830 0.820 0.904 0.895
Politician 0.933 0.900 0.899 0.855
Overall 0.725 0.736 0.887 0.884

vTL = arg max
v

n∑
i=1

TL(i, v). (13)

• Total Mentions (TM): This algorithm is similar to TL,
with the difference that all (and not just unique) mentions
of a location in a page, denoted as TM(i, v), are counted.

vTM = arg max
v

n∑
i=1

TM(i, v). (14)

• Frequency Non-uniformity (FN): This model prefers
the level that has the largest non-uniformity distribu-
tion of the ranks over locations. For each level v and
each document di, the non-uniformity of the inheritance-
based probability distribution, denoted as Jv(pi, n), is
computed, with L set to the set of locations at level v.
The algorithm then finds the mean over documents for
each level and chooses the level with the maximum mean.

vFN = arg max
v

1

|P |

|D|∑
i=1

Jv(di, n). (15)

• Distance Non-uniformity (DN): This algorithm is
similar to FN, with the difference that the non-uniformity
function is Jv(di, n), as given in Eq 6.

• Probability Non-uniformity (PN): This is the algo-
rithm described in Section 4.5. The non-uniformity is
computed as defined in Eq. 10. It differs from the meth-
ods FN and DN in that the score is based on the probability
mass given by the combined model P̂ instead of P̂inh or
P̂near.

Results and discussion Table 4 shows for each algorithm
both the accuracy and the number of names whose centres
are correctly identified. PN outperforms other baselines with
an accuracy of 70.8%. Also similar models that measure the
uniqueness of a geo-centre (namely FN and DN) are compet-
itive, suggesting that methods that are based on the non-

Table 4: Level classification results by different algorithms.

Method
Correct

Geo-centers
Accuracy

TL 35 0.333
TM 69 0.657
FN 69 0.657
DN 71 0.676
PN 75 0.708

uniformity of the scores or ranks are effective in detecting a
level of dispersion.

6. RELATED WORK
Our work relates to the lines of research on geotagging

web resources and toponym resolution; we are not aware of
any work on geotagging the more general class of named
entities covered in this paper.

Existing approaches to extracting the geographic foci (geo-
centres) of web pages [1, 19, 10] generally use hand-made
rules to disambiguate location mentions or to aggregate the
scores of multiple mentions. Web-a-where [1] comes up with
a geographic focus for a web page by assigning a confidence
score to every location mentioned in the page (using some
predefined rules) and propagating the scores between loca-
tions that are in a containment relationship. Our work also
exploits the containment relationships between locations,
but unlike Web-a-where, we do not use hand-picked con-
fidence scores.

Ding et al. [8] introduce the concepts of power and spread
for a web page based on the link structure and the geograph-
ical scope of the page. The spread introduced in this work
is similar to the entropy-based score used in our work for
measuring the likeliness that a geo-centre exists. Our work
differs from Ding et al.’s in that our approach does not rely
on the link structure of pages, and can be applied to both
individual pages and collections of pages.

When named entities are geographical locations, toponym
resolution (e.g. [15, 7]) may be applied for disambiguation
and to get the location coordinates. The problem can be
considered as a binary classification where each possible in-
terpretation of a toponym is considered correct or incorrect.
The techniques developed here are mostly supervised, and
may use features from a window of text where a toponym is
mentioned. Our work also uses the context features but is
not limited to geographical names.

Finally, there has been studies on locating a user based
on his/her generated content, with the hypothesis that a
user’s location correlates with the content he/she generates
in social networks. Most efforts fall in two of the world’s
most widely used social networks, Facebook [4] and Twitter
[6], where known user geotags are used to train models that



can predict the users’ geo-centres. These approaches are
supervised whereas named entities with tagged locations are
not as prominent in web pages as they are in social network
systems. An exception is Glitter of Li et al. [14] which
estimates the location of a microblog user by leveraging clues
of points-of-interest (POI) that are mentioned by the user,
and the cities that contain those POIs.Our approach differs
from Glitter in that the scores assigned to a location in our
work is highly dependent on the positions of its mentions in
each document, while Glitter considers all the mentions
of a location equally important; this may be a reasonable
assumption for tweets with lengths limited to 140 characters
but not for general web pages and documents.

7. CONCLUSIONS AND FUTURE WORK
In this paper we conduct a study on estimating the geo-

centres of named entities based on their mentions in relevant
web pages. We hypothesize that a name with regional ori-
entation mentioned in a web page inherits the geo-centre of
the page unless it is qualified with another geo-centre men-
tioned nearby. We propose an unsupervised framework to
identify both a geo-centre and a level of dispersion. We de-
vise a variety of models that estimate the probabilities of a
unique geo-centre among a set of candidates and empirically
evaluate our models and show that a good accuracy for all
categories of names studied in this paper can be achieved.

Our study leads to a few potential research directions.
First, while there are many entities with a unique geo-centre,
there are some that may take multiple geo-centres over time.
This may be less of an issue if the set of pages for which a
geo-centre is detected focuses on one aspect that is likely
to lead to a unique geo-centre. That said, studying the in-
teractions between those centres and modelling their mani-
festations in documents or different categories of named en-
tities is an interesting direction. Second, more clues may
be leveraged when extracting candidate locations from web
pages. In particular, the future work may consider extract-
ing named entities with known geo-centres in web pages
and using them as clues of locations. Also better captur-
ing the structure of a web page can be helpful, and may
lead to a more accurate model of measuring the distance
between mentions of entities. Last but not least, our frame-
work may be improved by targeting more specific classes of
names and/or applying different models to different classes
of names and pages. A deeper analysis of the characteris-
tics of names, pages and evaluation models is needed toward
such improvements.

Acknowledgments
This research is supported by the Natural Sciences and En-
gineering Research Council of Canada.

8. REFERENCES
[1] E. Amitay, N. Har’El, R. Sivan, and A. Soffer.

Web-a-where: geotagging web content. In Proc. of the
SIGIR Conf., pages 273–280, 2004.

[2] N. Bach and S. Badaskar. A review of relation
extraction. Technical report, Language Technologies
Institute, Carnegie Mellon University, 2007.

[3] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak.
Spatial variation in search engine queries. In Proc. of
the WWW Conf., pages 357–366, 2008.

[4] L. Backstrom, E. Sun, and C. Marlow. Find me if you
can: improving geographical prediction with social and
spatial proximity. In Proc. of the WWW Conf., pages
61–70, 2010.

[5] M. Banko, M. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open information extraction from the
web. In Proc. of the IJCAI Conf., pages 2670–2676,
2007.

[6] Z. Cheng, J. Caverlee, and K. Lee. You are where you
tweet: a content-based approach to geo-locating twitter
users. In Proc. of the CIKM Conf., pages 759–768, 2010.

[7] G. DeLozier, J. Baldridge, and L. London.
Gazetteer-independent toponym resolution using
geographic word profiles. In Proc. of the AAAI Conf.,
pages 2382–2388, 2015.

[8] J. Ding, L. Gravano, and N. Shivakumar. Computing
geographical scopes of web resources. In Proc. of the
VLDB Conf., pages 545–556, 2000.

[9] D. Downey, M. Broadhead, and O. Etzioni. Locating
complex named entities in web text. In Proc. of the
IJCAI Conf., pages 2733–2739, 2007.

[10] R. P. et al. The design and implementation of
SPIRIT: a spatially aware search engine for information
retrieval on the internet. Intl. Journal of GIS,
21(7):717–745, 2007.

[11] J. Finkely, T. Grenager, and C. Manning.
Incorporating non-local information into information
extraction systems by gibbs sampling. In Proc. of the
ACL Conf., pages 363–370, 2005.

[12] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proc. of the WSDM Conf., pages 441–450, 2010.

[13] M. Lesk. Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone
from an ice cream cone. In Proc. of the SIGDOC Conf.,
pages 24–26, 1986.

[14] G. Li, J. Hu, J. Feng, and K. Tan. Effective location
identification from microblogs. In Proc. of the ICDE
Conf., pages 880–891, 2014.

[15] M. Lieberman and H. Samet. Adaptive context
features for toponym resolution in streaming news. In
Proc. of the SIGIR Conf., pages 731–740, 2012.

[16] D. Ravichandran and E. Hovy. Learning surface text
patterns for a question answering system. In Proc. of
the ACL Conf., pages 41–47, 2002.

[17] D. Smith and G. Crane. Disambiguating geographic
names in a historical digital library. In Proc. of the
ECDL Conf., pages 127–136, 2001.

[18] T. Tezuka, T. Kurashima, and K. Tanaka. Toward
tighter integration of web search with geographic
information system. In Proc. of the WWW Conf., pages
277–286, 2006.

[19] C. Wang, X. Xie, L. Wang, Y. Lu, and W. Ma.
Detecting geographic locations from web resources. In
Proc. of the GIR Workshop, pages 17–24, 2005.

[20] C. Whitelaw, A. Kehlenbeck, N. Petrovic, and
L. Ungar. Web-scale named entity recognition. In Proc.
of the CIKM Conf., pages 123–132, 2008.


	Introduction
	The Model
	Hypothesis testing

	Finding Candidate Locations
	Mentions extraction
	Location disambiguation

	Detecting Geotags
	Geotagging at the city level
	Geotagging at higher levels
	Corpus aggregation
	Location refinement
	Detecting the dispersion level of a name

	Experiments and Evaluation
	Gold standard datasets
	Evaluation settings
	City level geotagging with single pages
	State level geotagging with single pages
	Aggregating results of different pages
	Location refinement
	Selecting the most relevant level

	Related Work
	Conclusions and Future Work
	References

