
BareTQL: An Interactive System for Searching and Extraction of
Open Data Tables

Davood Rafiei
University of Alberta
Edmonton, Canada
drafiei@ualberta.ca

Harrison Fah
University of Alberta
Edmonton, Canada
fah@ualberta.ca

Thomas Lafrance
University of Alberta
Edmonton, Canada
tlafranc@ualberta.ca

Arash Dargahi Nobari
University of Alberta
Edmonton, Canada
dargahi@ualberta.ca

ABSTRACT
There has been a plethora of research and commercial activities
around extracting structured data from documents (e.g. web pages
and scientific articles) and making them available to other appli-
cations. Many organizations and government bodies have been
also making their data available to public. Despite the progress in
many different aspects of table extraction and publishing, query-
ing incomplete data in tables with little or no schema has been a
challenge. This paper presents BareTQL, an interactive system for
querying open data tables in the presence of the aforementioned
challenges.

ACM Reference Format:
Davood Rafiei, Harrison Fah, Thomas Lafrance, and Arash Dargahi Nobari.
2021. BareTQL: An Interactive System for Searching and Extraction of Open
Data Tables . In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Querying data that do not conform to a predefined or known for-
matting has been a long-standing research challenge [1, 4]. Much
of tabular data collected from web pages and online resources have
little or no schema information. Also, data exchanged between
different organizations or shared online in the form of open data
often are in tabular form with either little schema information or a
schema that is not known to the users searching them. This reduces
querying over such collections to simple keyword searches. We
propose to demonstrate Bare Table Query Language, or in short
BareTQL (pronounced as bear tickle), an interactive framework for
querying large collections of tables. Compared to table search ap-
proaches in the literature (e.g. [2]), BareTQL offers three novel and
distinctive features: (1) the composability and interoperability of
operations with little reliance on the schema information of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

tables being queried, (2) ability to transform tables for joinability,
and (3) search customization in an interactive manner.

BareTQL moves beyond keyword search and provides a set of
algebraic operators over a table collection and ways of combining
those operators in a query to achieve a desired task. Supporting
algebraic operations is a challenge when little is known or can be
assumed about the underlying table schemes. BareTQL achieves
this by taking an exploratory approach to search with a focus on
what is known already and building on top.

2 OVERVIEW OF BARETQL
To account for variations in the number of rows and columns,
BareTQL stores table content at the cell level. Column types (e.g.,
numeric, text, etc.) provide hints on which columns can match
queries, hence they are maintained, and so are titles and captions
(when present), which help with keyword searches. Three inverted
indexes are constructed on the cell values to support (1) exact
matches on cell values, (2) keywordmatches, and (3) ngrammatches.
A keyword index maintains the terms after the cell values are split
based on space and punctuation, and an ngram index maintains all
ngrams of size 𝑛 for 𝑛 ∈ [𝑚𝑖𝑛𝑁𝐺,𝑚𝑎𝑥𝑁𝐺].

As shown in Figure 1, five classes of operations are supported: (1)
keyword search, (2) table search, (3) detecting joinability, (4) join,
and (5) table expansion. Details of these operations are discussed
next.

2.1 Keyword search
The exploration may start with a keyword search when little infor-
mation is known about the tables being queried and their structures.
Each table can be treated as a bag of words, and the standard IR
techniques may be used to find tables that are relevant to a keyword
query. BareTQL uses BM25 [6] for ranking the results, and the user
has the option to select a table to develop further queries.

2.2 Table search
BareTQL supports table search where the user has a table (either
obtained through a keyword search or put together manually) and
wants to find other tables that are related. Let’s first consider a query
table with a single column. The similarity between two columns
can be defined in terms of the number of entries they have in
common, which gives rise to the Jaccard similarity. Our experiment

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Davood Rafiei, Harrison Fah, Thomas Lafrance, and Arash Dargahi Nobari

Dashboard

Keyword
Search Table Search Row Matcher

Join

Expand Table
(xr, xc, fill)

Transformation
Finder

Transformation
Selector

table

table

joined table

table

keywords

Find Joinable

src & tgt
tables

transformations

src, tgt & transformations

Figure 1: System architecture with more details of the operations described in the overview section

on various datasets shows that this is not a good measure if some
values appear more commonly than others. To avoid this, BareTQL
also implements a weighted scoring where cell values are inversely
weighted based on the number of rows they appear in, following
inverse document frequency scoring in IR. In particular, let 𝑖𝑟 𝑓 (𝑣, 𝑞)
be the logarithmically-scaled inverse fraction of the rows in the
query table 𝑞 that contain 𝑣 , i.e. 𝑙𝑜𝑔(|𝑞 |/𝑛(𝑣, 𝑞)), and 𝑖𝑟 𝑓 (𝑣, 𝑑) be
the logarithmically-scaled inverse fraction of the rows in the data
table 𝑑 , i.e. 𝑙𝑜𝑔(𝑁 /𝑛(𝑣, 𝑑), where 𝑁 is the total number of rows in
the collection, 𝑞 is the number of rows in the query table 𝑡 and
𝑛(𝑣, 𝑞) and 𝑛(𝑣, 𝑑) are the number of rows in tables 𝑞 and 𝑑 that
contain 𝑣 respectively. The product 𝑖𝑟 𝑓 (𝑣, 𝑞) .𝑖𝑟 𝑓 (𝑣, 𝑑), which gives
the inverse row frequency of 𝑣 , and the frequency of 𝑣 in data table
𝑑 , 𝑛(𝑣, 𝑑), are plugged into the BM25 scoring after some smoothing
and are aggregated over different cell values in the query table
to give a relevance score. Different types of matches between cell
values are supported including exact and ngram-based matching.

When query tables have more than one column, the user can
tag the columns that can be considered in the match and if some
columns must be grouped together (e.g. first name and last name).
For a query table 𝑞 with multiple column groups and a candidate
data table 𝑑 , the product of the relevance scores of column groups
gives the relevance score, based on which the candidate table is
ranked.

To evaluate our table search, we ran it over two recent bench-
marks in the literature: AutoJoin [7] and AutoFuzzyJoin [3]. Both
datasets include pairs of tables that are joinable after some trans-
formations or formatting of the rows. Some tables in the dataset
participate in multiple joins (e.g., AutoJoin has five table listings
of New York governors and six listings of US presidents); and we
picked one table pair randomly from each of those sets. Our BM25
adaptation for join (as discussed above) retrieves the ground truth
matching table at top position in 88% cases for AutoJoin and in
86% of the cases for AutoFuzzyJoin, whereas the Jaccard similarity
retrieves the ground truth matching table at top position in 65%
cases for Autojoin and in 94% of the cases for AutoFuzzyJoin.

2.3 Transforming tables for joinability
Tables obtained through a table search may not be joinable with
the query table when data is formatted differently or a cell value in
one table is spread over multiple cells in the other tables. BareTQL
supports transformations which are applied to a source table to
produce rows that are joinable with the rows of a target table.
Transformations include basic string operations such as split and
substring and more complex operations in the form of a sequence
of basic operations [5]. Given a query table and a candidate table,
BareTQL searches the space of possible transformations and iden-
tifies those that transform the largest number of rows or cover
the input with the least number of transformations. This is quite
useful since instead of manually finding transformations, which
is a tedious and time-consuming job, the user may only verify or
confirm a few transformations before doing a join. Figure 2 shows
an example where the name in one table is mapped to a usedid in
another table using a sequence of transformations automatically
obtained in BareTQL.

2.4 Expand rows (xr)
Given an example set of tuples, sometimes we want to find more
tuples that may belong to the same class or have the same proper-
ties. The xr operation takes a query table as input and expands it
vertically by adding more tuples that are similar to the given set.
The new tuples may be ordered based on their relatedness to the
query set.

To find tables that are related to a given set of tuples and may
expand it, the table search operator may be invoked. That operator
finds, for each matching table that is returned, not only a matching
or similarity score but also a mapping of columns that gives rise to
the maximum similarity. With the related tables projected on the
columns that are mapped to those of the query table, one can extract
the co-occurring tuples and sort them based on their co-occurrence
frequencies, treating all related tables the same. BareTQL takes into
account the similarity scores of the related tables in the ordering.
Hence the similarity between a candidate tuple 𝑡 and query table

BareTQL: An Interactive System for Searching and Extraction of Open Data Tables Conference’17, July 2017, Washington, DC, USA

username department

dgalvis neuroscience

salgee mathematics

cchiu

Name

Galvis, Daniel

Chiu, Chun-yuan

Algee, Sarah

Joinable
First name + Last name à username

Join transformations

username department

dozturk

salgee mathematics

cchiu

gdawer mathematics

dgalvis neuroscience

Name

Galvis, Daniel

Ozturk, Deniz

Dawer, Gitesh

Chiu, Chun-yuan

Algee, Sarah

Name username department

Galvis, Daniel dgalvis neuroscience

Ozturk, Deniz dozturk

Dawer, Gitesh gdawer mathematics

Chiu, Chun-yuan cchiu

Algee, Sarah salgee mathematics

Join
Concatenate (
split by comma & take the 1st character of
the 2nd item,
split by comma & take the 1st item)

Figure 2: An example of join in BareTQL

𝑇𝑞 is defined over all related tables 𝑇 that mention tuple 𝑡 as

𝑡𝑢𝑝𝑙𝑒𝑆𝑖𝑚(𝑡,𝑇𝑞) =
∑︁

𝑇 ∈𝑇𝐶∧𝑃 ∈𝜋 (𝑇)∧𝑈𝐶 (𝑃,𝑇𝑞)∧𝑡 ∈𝑃
𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑚(𝑇𝑞,𝑇),

(1)
where 𝑇 ranges over the tables collection 𝑇𝐶 that is relevant, 𝑃 ∈
𝜋 (𝑇) is a projection of 𝑇 , and 𝑈𝐶 (𝑃,𝑇𝑞) is an indicator variable
which is true when 𝑃 and 𝑇𝑞 are union-compatible.

2.5 Expand Columns (xc)
Given a table, sometimes we want to find more attributes that may
describe the given set. For example, given a set of movie titles, we
may want to find more information about each movie, such as the
production year, the director, the producing studio, the box office
revenue, etc. The xc operator expands a given query table horizon-
tally by adding more columns that may describe the given set. The
additional columns can vary from one query to next, depending on
how the given tuples in the query are mentioned in the matching
tables in TC.

To find tables that are related to a given query set and may
expand it horizontally, the table search operation can again be in-
voked. Any column in a related table that does not map directly to
a query table column can be seen as a potential extension of the
query columns. However, since related tables are ranked, their con-
tributed columns may also be ranked accordingly. Related columns
may also be ranked based on the number of their non-empty cell
values.

2.6 Fill in the blanks
Sometimes we have partial information in the form of a table, for
example, about entities and their properties and wish to fill the
gaps. For example, we may have data as shown in Table 1 and want
to fill the missing information marked with empty string values,
using data in our table collection.

The table search operation can again be used to find tables that
may have data to fill the gaps. There can be a disagreement between
the relevant tables on how the gaps should be filled though. For
example, consider filling the missing information in Table 1 (right).
There can be multiple models from Canon and Pentax that may
be considered equivalent to Nikon D700. The fill operation may
analyze the matches and return either the most likely filler or all
possible fillers for each gap.

Table 1: Example query tables for the fill operator

Tim Cook Apple 2011
Sundar Pichai Google

Microsoft 2014

Nikon D700
Canon
Pentax

3 DEMO EXPERIENCE
The followings are some of the use cases for BareTQL.

(1) The user knows a few movie titles and wants to find out
more information about those titles (e.g. awards received,
director, box office revenue) as well as more similar titles.

(2) The user has a list of companies as a query table and wants
to find data tables that provide more information about the
entries in the query table.

(3) The user has small samples of two tables, each providing a
different type of information about the same class of entities
but formatted differently and not directly joinable. BareTQL
can find transformations that map the entities in one table to
those in the other table. The user can select a transformation
from those obtained and apply it to the entire table (including
many rows that are not seen) before a join.

Figure 3 shows some examples of search operations.

Conference’17, July 2017, Washington, DC, USA Davood Rafiei, Harrison Fah, Thomas Lafrance, and Arash Dargahi Nobari

The Godfather: Part II 1974

The Dark Knight 2008

Schindler's List 1993

The Shawshank Redemption 1994

#awards #nominations

The Godfather: Part II 1974 6 11

The Dark Knight 2008 2 8

Schindler's List 1993 7 12

The Shawshank Redemption 1994

The Godfather: Part II 1974

The Dark Knight 2008

Schindler's List 1993

The Shawshank Redemption 1994

Pulp Fiction 1994

The Father 2021/21

Query Table

Extend ColumnsExtend Rows

(total 1327 rows are added)

(5 total matches)

Keyword Search
“leonardo dicaprio”Table search on the first column

(9 total matches)

(exact matches)

Figure 3: Examples of search operations in BareTQL

4 CONCLUSION
We have presented BareTQL, an operational interface and an inter-
active system for querying open data tables and web tables. The
two design goals of BareTQL have been (1) the composability and
interoperability of operations to allow queries to be built on the
fly when the schema information is not available for open data
tables, and (2) the scalability of operations to large table collections.
Despite our progress as reported, challenges still remain. Our future
work will explore ways of improving BareTQL in both fronts.

REFERENCES
[1] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting relational

tables from lists on the web. Proceedings of the VLDB Endowment 2, 1 (2009), 1078–
1089.

[2] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paulheim,
and Christian Bizer. 2015. The mannheim search join engine. Journal of Web
Semantics 35 (2015), 159–166.

[3] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In
Proceedings of the 2021 International Conference on Management of Data. 1064–
1076.

[4] Renée J Miller. 2018. Open data integration. Proceedings of the VLDB Endowment
11, 12 (2018), 2130–2139.

[5] Arash Dargahi Nobari and Davood Rafiei. 2021. Efficiently Transforming Tables
for Joinability. arXiv preprint arXiv:2111.09912 (2021).

[6] Stephen Robertson andHugo Zaragoza. 2009. The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc.

[7] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by
leveraging transformations. Proceedings of the VLDB Endowment 10, 10 (2017),
1034–1045.

	Abstract
	1 Introduction
	2 Overview of BareTQL
	2.1 Keyword search
	2.2 Table search
	2.3 Transforming tables for joinability
	2.4 Expand rows (xr)
	2.5 Expand Columns (xc)
	2.6 Fill in the blanks

	3 Demo Experience
	4 Conclusion
	References

