
Natural Language Data
Management and Interfaces
Recent Development and Open Challenges

 Davood	Rafiei	

University	of	Alberta	
	

Yunyao	Li	
IBM	Research	-	Almaden	

Chicago
2017

“If we are to satisfy the needs of
casual users of data bases, we
must break through the barriers
that presently prevent these users
from freely employing their native
languages"

Ted Codd, 1974

Employing Native Languages

• As data for describing things and relationships
• Otherwise a huge volume of data will end up outside
databases

• As an interface to databases
• Otherwise we limit database use to professionals

Outline

• Natural Language Data Management
• Natural Language Interfaces for Databases
• Open Challenges and Opportunities

Natural Language Data
Management

Outline of Part I

• The ubiquity of natural language data
• A few areas of application
• Challenges

• Areas of progress
• Querying natural language text
• Transforming natural language text
• Integration

The Ubiquity of
Natural Language Data

Data Domains

• Corporate data
• Scientific literature
• News articles
• Wikipedia

Corporate Data

Merril Lynch rule
“unstructured data
comprises the vast
majority of data found
in an organization.
Some estimates run as
high as 80%.”

Unstructured	data	

Scientific Literature
Impact of less invasive treatments including sclerotherapy with a new agent and

 hemorrhoidopexy for prolapsing internal hemorrhoids.

Tokunaga Y, Sasaki H. (Int Surg. 2013)

Abstract

Abstract Conventional hemorrhoidectomy is applied for the treatment of prolapsing
internal hemorrhoids. Recently, less-invasive treatments such as sclerotherapy using
aluminum potassium sulphate/tannic acid (ALTA) and a procedure for prolapse and
hemorrhoids (PPH) have been introduced. We compared the results of sclerotherapy
with ALTA and an improved type of PPH03 with those of hemorrhoidectomy. Between
January 2006 and March 2009, we performed hemorrhoidectomy in 464 patients,
ALTA in 940 patients, and PPH in 148 patients with second- and third-degree internal
hemorrhoids according to the Goligher's classification. The volume of ALTA injected
into a hemorrhoid was 7.3 ± 2.2 (mean ± SD) mL. The duration of the operation was
significantly shorter in ALTA (13 ± 2 minutes) than in hemorrhoidectomy (43 ± 5
minutes) or PPH (32 ± 12 minutes). Postoperative pain, requiring intravenous pain
medications, occurred in 65 cases (14%) in hemorrhoidectomy, in 16 cases (1.7%) in
ALTA, and in 1 case (0.7%) in PPH. The disappearance rates of prolapse were 100% in
hemorrhoidectomy, 96% in ALTA, and 98.6% in PPH. ALTA can be performed on an
outpatient basis without any severe pain or complication, and PPH is a useful
alternative treatment with less pain. Less-invasive treatments are beneficial when
performed with care to avoid complications.

	

Treatment

No of patients tries on

Duration	

News Articles
April 25, 2017 12:48 pm

Loonie hits 14-month low as softwood lumber duties expected to impact
jobs

By Ross Marowits The Canadian Press

MONTREAL – The loonie hit a 14-month low on Tuesday at 73.60 cents, the
lowest level since February 2016.

The U.S. Commerce Department levied countervailing duties ranging between
3.02 and 24.12 per cent on five large Canadian producers and 19.88 per cent
for all other firms effective May 1. The duties will be retroactive 90 days for
J.D. Irving and producers other than Canfor, West Fraser, Resolute Forest
Products and Tolko.

Anti-dumping duties to be announced June 23 could raise the total to as much
as 30 to 35 per cent.

25,000 jobs will eventually be hit, including 10,000 direct jobs and 15,000
indirect ones tied to the sector

Dias anticipates that.

Event

Triggering event

Following events expected

	

Wikipedia

• 42 million pages
• Only 2.4 million infobox triplets
• Lots of data not in infobox
Obama was hired in Chicago as director of the Developing
Communities Project, a church-based community organization
originally comprising eight Catholic parishes in Roseland, West
Pullman, and Riverdale on Chicago's South Side.

…

In 1991, Obama accepted a two-year position as Visiting Law and
Government Fellow at the University of Chicago Law School to work
on his first book.

…

From April to October 1992, Obama directed Illinois's Project Vote, a
voter registration campaign…

Community QA

• Services such as Yahoo answers, Stack
Overflow, AnswerBag, …

• Data: question and answer pairs
• Want answers to new queries

Q:	How to fix auto terminate mac terminal

Two	StackOverflow	pages	returned	by	Google	
-  osx - How do I get a Mac “.command” file to automatically

quit after running a shell script?

-  OSX - How to auto Close Terminal window after the “exit”

command executed.

Vision

Natural	Language		
Data	Management	

+	
Structured	Data	

Queries	 Results	

Challenges

Challenge – Lack of Schema

treatment	 pa4entCnt	 dura4on	 noOfPa4ents	 disappearanceRate	

sclerotherapy	with	
ALTA	

940	 13+-2	 16	 96	

PPH03	 148	 32+-12	 1	 98.6	

hemorrhoidectomy	 484	 43+-5	 65	 100	

• The scientific article shown earlier contains
structured data (as shown) but hard to query
due to the lack of schema

Challenge - Opacity of References

• Anaphora
• “Joe did not interrupt Sue because he was polite”

• “the lion bit the gazelle, because it had sharp

teeth”

• Ambiguity of ids

• Does “john” in article A refer to the same “john” in
article B?

• Variations due to spatiotemporal differences
• “police chief” is ambiguous without a
spatiotemporal anchor

Challenge - Richness of Semantics

• Semantic relations
• crow ⊆ bird; bird ∩ nonbird= {};
bird ∪ nonbird=U

• Pragmatics
• The meanning depends on the context
• E.g. “Sherlock saw the man with
binoculars”

• Textual entailment
• “every dog danced” ⟼ “every poodle
moved”

Challenge - Correctness of Data

• Incorrect or sarcastic
• “Vladimir Putin is the president of the US’’

• Correct at some point in time (but not now)
• “Barack Obama is the president of the US”

• Correct now
• “Donald Trump is the president of the US”

• Always correct
• “Barack Obama is born in Hawaii”

• “Earth rotates around the sun”

Natural Language Data

• Text
• Speech

Focus:	natural	language	text	

System Architecture

Transform	 RDF	
store	

Text	
store	

Text	System	

Integrate	

Enrichment	

EnYty	
ResoluYon	

InformaYon	
ExtracYon	

SQL	

SPARQL	

Support	
Natural	Language		
Text	Queries	

Rich	
Queries	

Knowledge	
Base	

Domain	
schema	

Structured	
Data		

DBMS	

Progress

• Entity resolution
• Information extraction
• Question answering
• Reasoning

Progress

• Support natural language text queries
(rich queries)

• Transform
• Integrate

Support Natural Language
Text Queries

Approaches

• Boolean queries
• Grammar-based schema and searches
• Text pattern queries
• Tree pattern queries

Boolean Queries

• TREC legal track 2006-2012
• Retrieve documents as evidence in civil
litigation

• Default search in Quicklaw and Westlaw
• E.g.

((memory	w/2	loss)	OR	amnesia	OR	Alzheimer!	OR	
demenYa)	AND	(lawsuit!	OR	liYg!	OR	case	OR	
	(tort	w/2	claim!)	OR	complaint	OR	allegaYon!)	

from	TREC	09	
Legal	track	

memory	/2	loss	
memory	/s	loss	

Highlight	that	due	to	the	variants	in	NL,		
BQ	can	be	extremely	complex	

Boolean Queries (Cont.)

• Not much use of the grammar
• Except ordering and term distance

• Research issues
• Optimization

• Selectivity estimation for boolean queries
[Chen et al., PODS 2000]

• String selectivity estimation [Jagadish et al.,
PODS 1999], [Chaudhuri et al., ICDE 2004]

• Query evaluation [Broder et al., CIKM 2003]

PAT Expressions
[Saliminen & Tompa, Acta Lingusitica Hungarica 94]

• A set-at-a-time algebra for text
• Text normalization

• Delimiters mapped to blank, lowercasing, etc.
• Searches make less use of grammar

• Lexical: e.g. “joe”, “bo”..“jo”
• Position: e.g. [20], shift.2 “2010”..“2017”

•  The last two characters of the matches
• Frequency: e.g. signif.2 “computer”

• Significant two terms that start with “computer” such as
“computer systems”

Mind your Grammar [Gonnet and Tompa, VLDB 1987]

• Schema expressed
as a grammar

• Studied in the context
of Oxford English

 Dictionary

Word	 Pos_tag	 Pr_brit	 Pr_us	 Plurals	 …	

Man-trap	 n	

Grammar-based Data

• The grammar (when known) allows data
to be represented and retrieved

• Compared to relational data
• Grammar ~ table schema
• Parsed strings (p-strings) ~ table instance

Grammar-based Data
(another context)

• Data wrapped in text and html formatting
• Many ecommerce sites with back-end rel.
data

• Grammar often simple
• Schema finding ~ grammar induction

• Input: (a) html pages with wrapped data, (b)
sample/tagged tuples

• Output: a grammar (or a wrapper)

Grammar Induction

• Challenge: Regular grammars cannot be
learned from positive samples only [Gold,
Inf. Cont. 1967]
• Many web pages use grammars that are
identifiable in the limit (e.g. [Crescenzi & Mecca,
J. ACM 2004])

• With natural language text
• Context free production rules exist for good
subsets

• Not deterministic (multiple derivations per input)
• The rules are usually complex, less uniform, and
maybe ambiguous

Text Pattern Queries

• Text modeled as “a sequence of tokens”
• Data wrapped in text patterns

• <name> was born in <year>
• Also referred to as surface text patterns
[Ravichandran and Hovy, ACL 2002]

• Queries ~ text patterns

Google Search: “is a car manufacturer”

DeWild [Li & Rafiei, SIGIR 2006, CIKM 2009]

• Query match short text (instead of a page)
• Result ranking

• To improve “precision at k”
• Query rewritings

DeWild	Query:	%	is	a	car	manufacturer	

Rewriting Rules

• Hyponym patterns [Hearst, 1992]
• X such as Y
• X including Y
• Y and other X

• Morphological patterns
• X invents Y
• Y is invented by X

• Specific patterns
• X discovers Y
• X finds Y
• X stumbles upon Y

Rewriting Rules in DeWild

#	nopos	
(.+),?	such	as	(.+)	
such	(.+)	as	(.+)	
(.+),?	especially	(.+)	
(.+),?	including	(.+)	
->	
$1	such	as	$2											&&	noun(,$1)	
such	$1	as	$2											&&	noun(,$1)	
$1,	especially	$2							&&	noun(,$1)	
$1,	including	$2								&&	noun(,$1)	
$2,	and	other	$1								&&	noun(,$1)	
$2,	or	other	$1									&&	noun(,$1)	
$2,	a	$1																				&&	noun($1,)	
$2	is	a	$1																						&&	noun($1,)	
	

#pos	
N<([^<>]+)>N,?	V<(\w+)>V	by	N<([^<>]+)>N	
N<([^<>]+)>N	V<is	(\w+)>V	by	N<([^<>]+)>N	
N<([^<>]+)>N	V<are	(\w+)>V	by	N<([^<>]+)>N	
N<([^<>]+)>N	V<was	(\w+)>V	by	N<([^<>]+)>N	
N<([^<>]+)>N	V<were	(\w+)>V	by	N<([^<>]+)>N	
->	
$3	$2	$1																&&	verb($2,,,)	
$3	$2	$1																&&	verb(,$2,,)	
$3	$2	$1																&&	verb(,,$2,)	
$3	will	$2	$1											&&	verb($2,,,)	
$3	is	going	to	$2	$1				&&	verb($2,,,)	
$1	is	$2	by	$3										&&	verb(,,,$2)	
$1	was	$2	by	$3									&&	verb(,,,$2)	
$1	are	$2	by	$3									&&	verb(,,,$2)	

noun(country,	countries)	 verb(go,	goes,	went,	gone)	

Queries in DeWild

• Text patterns with some wild cards
• E.g

• % is the prime minister of Canada
• % invented the light bulb
• % invented %
• % is a summer *blockbuster*

Indexing for Text Pattern Queries

• Method 1: Inverted index

34,480,00 -> …, <2,1,[10]>, …
is -> <1,5,[4,16,35,58,89]>, …. <2,1,[9]>, …
population -> … <2,1,[8]> <3,1,[10]>, …
Canada -> … <2,1,[7]>, …

Query:	Canada	populaYon	is	%	

docId	 o	 offset	list	

Indexing for Text Pattern Queries (Cont.)

• Method 2: Neighbor index
 [Cafarella & Etzioni, WWW 2005]

34,480,00 -> …, <2,1,[(10,is,-)]>, …
is -> …. <2,1,[(9,population,34,480,000)]>, …
population -> … <2,1,[(8,Canada,is)]>, …
Canada -> … <2,1,[(7,though,population)]>, …

Problems:	(1)	long	posYng	lists	e.g.	for	“is”,	“and”,	…	
																				(2)	join	costs		|#(query	terms)	-	1|	*	|post_list(termi)|	

Indexing for Text Pattern Queries (Cont.)

• Method 3: Word Permuterm Index (WPI)
 [Chubak & Rafiei, CIKM 2010]

• Based on Permuterm index [Garfield, JAIS 1976]

• Burrows-wheeler transformation of text [Burrows
& Wheeler, 1994]

• Structures to maintain the alphabet and to
access ranks

• E.g. three sentences (lexicographically sorted)
T = $ Rome is a city $ Rome is the capital of Italy $ countries such

as Italy $ ~

• BW-transform
• Find all word-level rotations of T
• Sort rotations
• The vector of the last elements is BW-transform

42	

Word-level Burrows-wheeler
transformation

$ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~

$ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city

$ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy

$ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy

Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of

Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as

Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $

Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $

a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is

as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such

capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the

city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a

countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $

is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome

is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome

of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital

such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries

the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is

~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

BW-transformation

43	

44	

Traversing L backwards

Prev(i)	=	Count[L[i]]	+	RankL[i](L,i)	

i
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

L

~

city

Italy

Italy

of

as

$

$

is

such

the

a

$

Rome

Rome

capital

countries

is

$

Prev(8)	=	Count($)	+	Rank$(L,8)	
														=	0	+	2	=	2	
The	second	$	is	preceded	by	city	in	T	

Prev(10)	=	Count(such)	+	Ranksuch(L,10)	
																=	16	+	1	=	17	
such	is	preceded	by	countries	in	T	

T = $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~

Prev(10)		Prev(8)		

Number	elements	smaller	
than	L[i],	in	L	

Occurrences	of	L[i]	in	the	
range	(L[1..i])	

Tree Pattern Queries

• Text often modeled as a set of “ordered
node labeled tree”
• Order usually correspond to the order of the
words in a sentence

• Queries
• Navigational axes: XPath style queries

• E.g. find sentences that include `dog’ as a subject
• Boolean queries

• E.g. Find sentences that contain any of the words w1, w2 or
w3.

• Quantifiers and implications
• Subtree searches

Subtree Searches

What kind of animal is agouti? (TREC-2004	QA	track)	
	

Approaches

• Literature on general tree matching
• E.g. ATreeGrep [Shasha et al., PODS 2002]
• Often do not exploit properties of
Syntactically-Annotated Tree (SAT)
• E.g. distinct labels on nodes

• Querying SATs
• Work from the NLP community

• E.g. TGrep2, CorpusSearch, Lpath
• Scan-based, inefficient

• Indexing unique subtrees

Indexing Unique Subtrees
[Chubak & Rafiei, PVLDB 2012]

• Keys: unique subtrees of up to a certain size
• Posting lists: structural info. of keys

• Evaluation strategy: break queries into
subtrees, fetch lists and join

• Syntactically annotated trees
• Abundant frequent patterns à small number of
keys

• Small average branching factor à small number
of postings

Example Subtrees

A	

B	 A	

B	C	

D	

C	

A	

B	

C	

D	

size	=	1	

A	

B	 C	

D	

size	=	2	

B	

A	

A	

A	

size	=	3	

A	

B	 C	

A	

B	 A	

A	

C	 A	

A	

A	

B	

A	

A	

C	

A	

B	

D	

A	

B	 C	 A	

B	 C	

D	

A	

B	

C	

D	

A	

B	

A	

C	

A	 C	

A	 D	

A	

B	 C	 B	

A	 A	

A	 C	 A	

A	 A	 A	

A	

B	

A	 C	

D	C	

Subtree Coding

• Filter-based
• Store only tid for each unique subtree in the
posting list

• No other structural information
• Subtree interval coding

• Store pre, post and order values in a pre-order
traversal (for containment rel.) and level (for
parent-child rel.)

• Root split coding
• Optimize the storage for subtree interval coding

Query Decomposition

B	

C	 D	

F	E	

Query	

A	

B	
A	Query	Cover	=	{	 ,	 }	

A	

D	

F	E	

,	

C	

B	

C	 D	

• Want an optimal cover to reduce the join cost
• Guarantee an optimal cover for filter-based and
subtree interval coding

• For subtrees of size 6 or less
• Bound the number of joins in a root split cover

System Architecture

Transform	 RDF	
store	

Text	
store	

Text	System	

Integrate	

Enrichment	

EnYty	
ResoluYon	

InformaYon	
ExtracYon	

SQL	

SPARQL	

Support	
Natural	Language		
Text	Queries	

Rich	
Queries	

Knowledge	
Base	

Domain	
schema	

Structured	
Data		

DBMS	

Transforming & Integra9ng
Natural Language Data

Transforming Natural Language Data

• Transformation to a meaning
representation (aka semantic parsing)
such as
• RDF triples
• Other form of logical
predicates

Integrating Natural Language Data

• Tight integration
• Text is maintained by a relational system

• Lose integration
• Text is maintained by a text system

Transforming Natural
Language Data to a Meaning

Representa9on

Challenges
(with logical inference in general)

• Detecting that
• Craw is a bird,
• Bird is an animal
• Craws can fly but pigs cannot
• Attending an organization relates to
education

• A person has a mother and a father but can
have many children

• Many more

Progress

• Brachman & Levesque, Knowledge
representation & reasoning, 2000.

• RTE entailment challenge
• Since 2005

• Knowledge bases and resources
such as Freebase, Wordnet, Yago,
dbpedia, …

• Shallow semantic parsers

Mapping to DCS Trees [Tian et al., ACL 2014]

• Dependency-based compositional
semantics (DCS) trees [Liang et al., ACL 2011]

• Similar to (and generated from) dependency
parse trees

love	

Mary	 dog	

subj obj
F1	=	love	∩	(Mary[subj]	X	W[obj])	
F2	=	animal	∩	πobj	(F1)	
F3	=	have	∩	(John[subj]	X	F2[obj])	

Does John have an animal that Mary love?

DCS	tree	node	~	table	
Subtree	~	rel.	algebra	exp.	

Logical Inference on DCS

• Some of the axioms
• (R ⊂ S & S ⊂ T) ⇒ R ⊂ T
• R ⊂ S ⇒ πA(R) ⊂ πA(S)
• W != ∅

• Inference ~ deriving new relations using
the tables and the axioms

• Performance on inference problems
• Comparable to systems in FraCaS and
Pascal RTE

Addressing Knowledge Shortage

• Treat DCS tree fragments as paraphrase
candidates

• Establish paraphrases based on
distributional similarity (as in [Lewis &
Steedman, TACL 2013] and others)

blame	 cause	

Debby	 Debby	death	

storm	

tropical	

storm	

tropical	

loss	

life	

obj iobj objsubj

mod mod

mod

Semantic Parsing using Freebase
[Berant et al., EMNLP 2013]

• Transform questions to freebase derivations
• Learn the mapping from a large collection of
question-answer pairs

Approach

• 15 million triplets (text phrases) from
ClubWeb09 mapped to Freebase predicates
• Dates are normalized and text phrases are
lemmatized

• Unary predicates are extracted
•  E.g. city(Chicago) from (Chicago, “is a city in”, Illinois)
•  6,299 such unary predicates

• Entity types are checked when there is ambiguity
•  E.g. (BarackObama, 1961) is added to “born in” [person,date]

and not to “born in” [person,location]
•  55,081 typed binary predicates

Two Steps Mapping

• Alignment
• Map each phrase to a set of logical forms

• Bridging
• Establish a relation between multiple
predicates in a sentence

• E.g. Marriage.Spouse.TomCruise and 2006 will
form Marriage.(Spouse.TomCruise ∩ startDate.
2006)

The	transformaYon	helps	to	answer	quesYons	using	Freebase	

Storage and Querying of Triples

• RDF stores
• Native: Apache Jena TDB, Virtuoso,
Algebraix, 4store, GraphDB, …

• Relational-backed: Jena SDB, C-store, …
• Semantic reasoners

• Open source: Apache Jena, and many more
• A list at Manchester U.

•  http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

Integra9ng
Natural Language Data

Challenges

• Structure in text
• Often not known in advance
• Sometimes subjective

• Optimization and plan generation
• Difficult with less stats, cost estimates and
join dependencies

• Interaction with other systems (e.g. IE,
NER)
• Adds another layer of abstraction

Integration Schemes

•  Tight	integra4on	

• A	Rel.	Approach	to	Querying	
Text	
[Chu	et	al.,	VLDB	2007]	

•  Lose	integra4on	

• Join	queries	with	external	
text	sources	
[Chaudhuri	et	al.,	DIGMOD	Record	
1995]	

• OpYmizing	SQL	queries	over	
text	databases		
[Jain	et	al.,	ICDE	2008]	

A Rel. Approach to Querying Text
[Chu et al., VLDB 2007]

• Each document is stored in a wide table
• Attributes are added as discovered
• Two tables

• Attribute catalog
• Records (one row per document)

• Attributes
• Two documents can have different attributes
• Multiple attributes in a doc can have the same
name

• Only non-null values are stored

AQribute	Catalog	

Records	

Operators

• Extract
• Extract desired entities and relationships

• Integrate
• Suggest mappings between attributes

• Cluster
• Group documents into one or more clusters

Operator	interacYon	
	Integrate(address,	sent-to)	– extract(city,street,zipcode)	

	

Lose Integration of Text
[Chaudhuri et al., SIGMOD Record 1995]

• Documents stored in a text system
• Relational view of documents

RelaYonal		
Database	
System	

Text	
System	
(mercury)	

docid	 4tle	 author	 abstract	 …	

Search,	retrieve,	join	

Integration Techniques

• Tuple substitution
• Nested loop with the db tuple as the outer
relation

SELECT	p.member,	p.name,	m.docid	
FROM	projects	p,	mercury	m	
WHERE	p.sponsor=‘NSF’	AND	p.name	in	m.Ytle	
															AND	p.member	in	m.author	

Integration Techniques -- Cont.

• Semi-join
• Suppose the text system can take k terms
• For n members, send n/k queries of the form
(m1 OR m2 OR … OR mk) to the text system

• Probing
• Select a set of terms (how?) from project title
and check their mentions in the text system

• Keep a list of terms (or assignments) that
return empty

• Probing with tuple substitution
• Maintain a cache

SQL Queries over Text Databases
[Jain et al., ICDE 2008]

• Information Extraction (IE) modules over
text
• headquarter(company, location)

• ceoOf(company, ceo)

• Relational view of text
• A set of full outer joins over IE modules
• e.g. companies =headquarter ⋈ ceoOf ⋈ …

• SQL queries over relational views
• Want to improve upon “extract-then-query”

Problem

• Given a SQL query

• Find execution strategies that meet some
efficiency and quality constraints
• In terms of runtime, precision, recall, …

• On-the-fly IE from text

SELECT company, ceo, location�
FROM companies

WHERE location=‘Chicago’

Retrieval Strategies

• scan
• Process all documents

• const
• Process documents that contain query
keywords

• promD
• Only process the promising documents for
each IE system (using IE specific keywords)

• promC
• AND the predicates of const and promD

chicago	

headquarter	OR	(based	AND	shares)	

chicago	AND	(Headquarter	OR	(based	AND	shares)	
	

Selecting an Execution Plan
• Stats estimated for each strategy

• # of matching docs docs(E, promC, D)
• Retrieval time rTime(E, scan, D)

• Cost estimation
• Stratified sampling (with one stratum for PD
and another stratum for D-PD)

• For const use both
strata

• For promC & promD
use PD only

scan	

const	
promD	

promC	

D	

PD	

Natural Language Interface to
Databases (NLIDB)

Anatomy of a NLIDB

Query	
Understanding	

Query	
TranslaYon	

Data	
store	

Feedback	
GeneraYon	

Domain	
knowledge	

OpYonal	component	

NLQ	 InterpretaYon	

interacYons	

queries	

queries	

Query Understanding
– Scope of Natural Language Support

Ad-hoc	
NLQs	

Controlled		
NLQs	

Grammar	complexity	

Vocabulary	complexity	

Ambiguity	

Parser	error	

Query	naturalness	

Query Understanding – Stateless and Stateful

Stateful	NLQs	Stateless	NLQs	

NLQ	Engine	

Databases	

NLQ	

NLQ	Engine	

Databases	

NLQ	

Query	
history	

Each	query	must	be		
•  Fully	specified	
•  Processed	independently	

Each	query		
•  Can	be	parYally	specified	
•  Processed	with	regards	to	previous	queries	

Query Understanding - Parser Error
Handling

 Parsers make mistakes.
•  News: Accuracy of a dependency parser = ~90% [Andor et al., 2016]
•  Questions: ~80% [Judge et al., 2006]

Different approaches:

Ignore		 Auto-correc4on	 Interac4ve	correc4on	
•  Detect	and	correct	certain		
					parser	mistakes	

•  Query	reformulaYon	
•  Parse	tree	correcYon	

•  Do	nothing	

Query Translation - Bridging the Semantic
Gaps
• Vocabulary gap
 “Bill Clinton” vs. “William Jefferson Clinton”
 “IBM” vs. “International Business Machine Incorporated”

• Leaky abstraction
• Mismatch between abstraction (e.g. data schema/domain ontology) and

user assumptions
 “top executives” vs “person with title CEO, CFO, CIO, etc.”

• Ambiguity in user queries

•  Underspecified queries
“Watson movie” à “Watson” as actor/actress

 E.g. Emma Watson
 “Watson” as a movie character

 E.g. Dr. Watson in movie “Holmes and
Watson”
 …

Query Translation – Query Construction

• Approaches
• Machine learning
• Construct formal queries from NLQ interpretations with

deterministic algorithms

• Query
•  Formal query languages (e.g. XQuery / SQL)

•  Intermediate language independent of underlying data stores
•  The same intermediate query for different data stores

Systems

• PRECISE
• NaLIX
• NLPQC
• FREyA
• NaLIR
• ML2SQL
• NL2CM
• ATHANA

PRECISE [Popescu et al., 2003,2004]

• Controlled NLQ based on Semantic Tractability

Dependency	
Parsing	

Query	
Generator	 RDBMS	

Lexicon	

NLQ	 InterpretaYon	 queries	Matcher	
SemanYc	
Override	

Feedback	
GeneraYon	interacYons	

Equivalence	
Checker	

PRECISE [Popescu et al., 2003,2004]

• Semantic Tractability
Database element: relations, attributes, or values

Token: a set of word stems that matches a database element

Syntactic marker: a term from a fixed set of database-independent terms that
make no semantic contribution to the interpretation of the NLQ

Semantically tractable sentence: Given a set of database element E, a
sentence S is considered semantic tractable, when its complete tokenization
satisfies the following conditions:

•  Every token matches a unique data element in E
•  Every attribute token attaches to a unique value token
•  Every relation token attaches to either an attribute token or a value token

PRECISE [Popescu et al., 2003,2004]

• Explicitly correct parsing errors:
•  Preposition attachment
•  Preposition ellipsis

What	are	flights	from	Boston	to	Chicago	on	Monday?	

pronoun	 verb	 noun	 prep	 noun	 noun	 noun	prep	prep	

NP	 NP	 NP	 NP	 NP	

PP	 PP	

NP	

PP	

NP	
VP	

S	

PRECISE [Popescu et al., 2003,2004]

• Explicitly correct parsing errors:
•  Preposition attachment
•  Preposition ellipsis

What	are	flights	from	Boston	to	Chicago	on	Monday?	

pronoun	 verb	 noun	 prep	 noun	 noun	 noun	prep	prep	

NP	 NP	 NP	 NP	 NP	

PP	 PP	

NP	

PP	

NP	
VP	

S	

What	are	flights	from	Boston	to	Chicago	Monday?	

pronoun	 verb	 noun	 prep	 noun	 noun	 noun	prep	

NP	 NP	 NP	 NP	 NP	

PP	

NP	

PP	

NP	
VP	

S	

PRECISE [Popescu et al., 2003,2004]

• Mapping parse tree nodes based on lexicon built from database

PRECISE [Popescu et al., 2003,2004]

• Addressing ambiguities through lexicon + semantic tractability
•  Maximum-flow solution

PRECISE [Popescu et al., 2003,2004]

• Addressing ambiguities through lexicon + semantic tractability + user input

What are the systems analyst jobs in Austin?

InterpretaYon	1		Job	4tle:	systems	analyst	
	
InterpretaYon	2		Area:							systems	
																														Job	4tle:	analyst	
	
	

NLQ	

PRECISE [Popescu et al., 2003,2004]

•  1-to-many translation from interpretations to SQL based on all
possible join-paths

Job.DescripYon	ß	What	
Job.Company	ß	‘HP’	
Job.Plaoorm	ß	‘Unix’	
City.size	ß	‘small’	
	

Job	

JobID	

DescripYon	

Company	

Plaoorm	

City	

CityID	

Name	

State	

Size	

What are the HP jobs on Unix in a small town?
NLQ	

InterpretaYons	 DB	Schema	

SELECT DISTINCT Job.Description
FROM Job, City
WHERE Job.Platform = ‘HP’
 AND Job.Company = ‘Unix’
 AND Job.JobID = City.CityID

PRECISE [Popescu et al., 2003,2004]

•  1-to-many translation from interpretations to SQL based on all
possible join-paths

Job.DescripYon	ß	What	
Job.Company	ß	‘HP’	
Job.Plaoorm	ß	‘Unix’	
City.size	ß	‘small’	
	

Job	

JobID	

DescripYon	

Company	

Plaoorm	

City	

CityID	

Name	

State	

Size	

What are the HP jobs on Unix in a small town?

WorkLoca4on	

JobID	

CityID	

NLQ	

InterpretaYons	 DB	Schema	

PostLoca4on	

JobID	

CityID	

SELECT DISTINCT Job.Description
FROM Job, WorkLocation, City
WHERE Job.Platform = ‘HP’
 AND Job.Company = ‘Unix’
 AND Job.JobID = WorkLocation.JobID
 AND WorkLocation.CityID = City.CityID

SELECT DISTINCT Job.Description
FROM Job, PostLocation, City
WHERE Job.Platform = ‘HP’
 AND Job.Company = ‘Unix’
 AND Job.JobID = WorkLocation.JobID
 AND PostLocation.CityID = City.CityID

NLPQC [Stratica et al., 2005]

QuesYon	
Parsing	

Query	
TranslaYon	 RDBMS	NLQ	 InterpretaYon	 queries	

Preprocessor	 schema	

Rule	
template	

Link	
Parser	

SemanYc	
Analysis	

• Controlled NLQ based on predefined rule templates
• No query history

NLPQC [Stratica et al., 2005]

• Build mapping rules for table names and attributes
•  Automatically generated using WordNet
•  Curated by system administrator

Table	name:	resource	
…	

Synonyms:	3	sense	of	resource	
		Sense	1:	resource	
		Sense	2:	resource	
		Sense	3:	resource,	resourcefulness,	imaginaYon	
Hypernyms:	3	sense	of	resource	
			…			
Hyponyms:		3	sense	of	resource	
		…	

…	

accept/reject/add	

Databases	

NLPQC [Stratica et al., 2005]

• Mapping parse tree node to data schema and value based on mapping
rules

Who is the author of book Algorithms

Table	name:	resource	 Table	name:	resource	 resource.default_a7ribute	

NLQ	

NLPQC [Stratica et al., 2005]

•  Mapping parse tree node to data schema and value based on pre-defined
mapping rules

•  Mapping parse trees to SQL statements based on pre-defined rule templates

Who is the author of book Algorithms

Table	name:	resource	 Table	name:	resource	 resource.default_a7ribute	

Rule	
template	

SELECT author.name FROM author, resource, resource_author
WHERE resource.title = “Algorithm”
AND resource_author.resource_id=resource.resource_id
AND resource_author.author_id=author.author_id

NLQ	

NLPQC [Stratica et al., 2005]

• No explicit ambiguity handling à leave it to mapping rules and rule
templates

• No parsing error handling à Assume no parsing error

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Controlled NLQ based on pre-defined controlled grammar

Dependency	
Parser	

Query	
TranslaYon	

XML	
DBs	

Message	Generator	

TranslaYon	
Pa�erns	

NLQ	 Validated		
Parse	Tree	

interacYons	

Schema-free	
XQuery	

warning	

Classifier	 	
Validator	

Controlled	
Grammar	

ClassificaYon	
Tables	

Query	
History	

	Domain	
Adapter	

Domain	
Knowledge	

Knowledge	
Extractor	

errors	

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Classify parse tree nodes into different types based on classification
tables

•  Token: words/phrases that can be mapped into a XQery component
•  Constructs in FLOWR expressions

•  Marker: word/phrase that cannot be mapped into a XQuery component
•  Connecting tokens, modify tokens, pronoun, stopwords

What are the state that share a watershed with California
NLQ	

What	are	[CMT]	

state[NT]	

the	[MM]	

the	[MM]	

Classified	parse	tree	

share	[CM]	

watershed	[NT]	

a	[MM]	

with	[CM]	

California	[VT]	

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Expand scope of NLQ support via domain adaptation

What are the state that share a watershed with California
NLQ	

What	are	[CMT]	

state[NT]	

the	[MM]	

that	[MM]	

Classified	parse	tree	

share	[CM]	

watershed	[NT]	

a	[MM]	

with	[CM]	

California	[VT]	

What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

California	[VT]	

Updated	classified	parse	tree	with	domain	knowledge	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Validate classified parse tree + term expansion + insert implicit nodes

What are the state that share a watershed with California
NLQ	

What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

California	[VT]	

Updated	classified	parse	tree	with	domain	knowledge	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

CA	[VT]	

Updated	classified	parse	tree	post	validaYon	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

state[NT]	

Implicit	
node	

Term	expansion	to	
bridge	terminology	

gap	

NaLIX [Li et al., 2007a, 2007b, 2007c]

•  Translation: (1) Variable binding

What are the state that share a watershed with California
NLQ	

$v1*	

$v2	

$v1*	
What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

CA	[VT]	

Updated	classified	parse	tree	post	validaYon	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

state[NT]	

$v3	

$v4	

NaLIX [Li et al., 2007a, 2007b, 2007c]

•  Translation: (2) Pattern Mapping

What are the state that share a watershed with California
NLQ	

$v1*	

$v2	

$v1*	
What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

CA	[VT]	

Updated	classified	parse	tree	post	validaYon	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

state[NT]	

$v3	

$v4	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
where $v2 = $v3
where $v4 = “CA”

XQuery	fragments	

NaLIX [Li et al., 2007a, 2007b, 2007c]

•  Translation: (3) Nesting and grouping

What are the state that share a watershed with California
NLQ	

$v1*	

$v2	

$v1*	
What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

CA	[VT]	

Updated	classified	parse	tree	post	validaYon	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

state[NT]	

$v3	

$v4	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
where $v2 = $v3
where $v4 = “CA”

XQuery	fragments	

No	aggregaYon	funcYon/qualifier	
à	No	nesYng/grouping	

NaLIX [Li et al., 2007a, 2007b, 2007c]

•  Translation: (3) Nesting and grouping

Find all the states whose number of rivers is the same as the number of rivers
in California?

NLQ	

$v1*	

$v2	

$v1*	
What	are	[CMT]	

state[NT]	

the	[MM]	

each	[MM]	

is	the	same	as[CM]	

state[NT]	

a	[MM]	 of	[CM]	

CA	[VT]	

where	[MM]	

river	[NT]	 river	[NT]	

a	[MM]	 of	[CM]	

state[NT]	

$v3	

$v4	

the	number	of	[FT]	 the	number	of	[FT]	$cv1	 $cv2	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
for $cv1 = count($v2)
for $cv2 = count($v3)
where $cv1 = $cv2
where $v4 = “CA”

XQuery	fragments	

AggregaYon	funcYon	
à NesYng	and	grouping	based	on	$v2
and	$v3	

NaLIX [Li et al., 2007a, 2007b, 2007c]

•  Transla9on: (4) Construc9on full query

Find all the states whose number of rivers is the same as the number of rivers
in California?

NLQ	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
for $cv1 = count($v2)
for $cv2 = count($v3)
where $cv1 = $cv2
where $v4 = “CA”

XQuery	fragments	
for $v1 in doc(“geo.xml”)//state,
 $v4 in doc(“geo.xml”)//state
let $vars1 := {
 for $v2 in doc(“geo.xml”)//river,
 $v5 in doc(“geo.xml”)//state
 where mqf($v2,$v5)
 and $v5 = $v1
 return $v2}
let $vars2 := {
 for $v3 in doc(“geo.xml”)//river,
 $v6 in doc(“geo.xml”)//state
 where mqf($v3,$v6)
 and $v6 = $v4
 return $v3}
where count($vars1) = count($vars2)
 and $v4 = “CA”
return $v1

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Support partially specified follow-up queries
• Detect topic switch to refresh query context

How about with Texas?
NLQ	

How	about	[SM]	

Validated	parse	tree	

with	[CM]	

TX	[VT]	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
for $cv1 = count($v2)
for $cv2 = count($v3)
where $cv1 = $cv2
where $v4 = “CA”

Query	context	

for $v1 in 〈doc〉//state
for $v2 in 〈doc〉//river
for $v3 in 〈doc〉//river
for $v4 in 〈doc〉//state
for $cv1 = count($v2)
for $cv2 = count($v3)
where $cv1 = $cv2
where $v4 = “TX”

Updated	query	context	

SubsYtuYon	
marker	

Updated	value	

NaLIX [Li et al., 2007a, 2007b, 2007c]

• Handle ambiguity
•  Ambiguity in terms à User feedback

 e.g. “California” can be the name of a state, as well as a city

•  Ambiguity in join-path à leverage Schema-free XQuery to find out the optimal join-
path

e.g. There could be multiple ways for a river to be related to a state

• Error handling
•  Do not handle parser error explicitly
•  Interactive UI to encourage NLQ input understandable by the system

FREyA [Damljanovic et al., 2013,2014]

• Support ad-hoc NLQs, including ill-formed queries
•  Direct ontology look up + parse tree mapping à Certain level of

robustness

SyntacYc	
parsing	

Query	
GeneraYon	 Ontology	

Feedback	
GeneraYon	

POCs	

dialogs	

SPARQL	
queries	

Ambiguous	
OCs/POCs		

Ontology-based	
Lookup	

SyntacYc	
Mapping	

Mapping	
rules	

NLQ	

OCs	

ConsolidaYon	
Triple	

GeneraYon	

FREyA [Damljanovic et al., 2013,2014]

• Parse tree mapping based on pre-defined heuristic rules
 à Finds POCs (Potential Ontology Concept)
• Direct ontology look up

 à Finds OCs (Ontology Concept)

What is the highest point of the state bordering Mississippi?
NLQ	

the	state	 Mississippi	
POCs	

the	highest	point	

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY	 PROPERTY	CLASS	 INSTANCE	

FREyA [Damljanovic et al., 2013,2014]

• Consolidate POCs and OCs
•  If span(POC) ⊆ span(OC) à Merge POC and OC

What is the highest point of the state bordering Mississippi?
NLQ	

state	 Mississippi	
POCs	

the	highest	point	

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY	 PROPERTY	CLASS	 INSTANCE	

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY	 PROPERTY	CLASS	 INSTANCE	

FREyA
[Damljanovic et al., 2013,2014]

• Consolidate POCs and OCs
•  If span(POC) ⊆ span(OC) à Merge POC and OC
•  Otherwise, provide suggestions and ask for user feedback

Return the population of California
NLQ	

California	
POCs	

populaYon	

OCs	

INSTANCE	

geo:california	

SuggesYons	ranked	based	on	string	similarity	(Monge	Elkan	+	Soundex)		

1.T1.	state	popula4on					2.	state	populaYon	density							3.	has	low	point,	…	

FREyA
[Damljanovic et al., 2013,2014]

•  Triple Generation: (1) Insert joker class

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY	 PROPERTY	CLASS	 INSTANCE	

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY1	 PROPERTY2	CLASS1	 INSTANCE	JOKER	

?

FREyA
[Damljanovic et al., 2013,2014]

•  Triple Generation: (2) Generate triples

OCs	

geo:isHighestPointOf									geo:State	geo:border	geo:mississippi	
PROPERTY1	 PROPERTY2	CLASS1	 INSTANCE	JOKER	

?

? - geo:isHighestPointOf - geo:State;
geo:State - geo:borders - geo:mississippi (geo:State);

Triples	

FREyA
[Damljanovic et al., 2013,2014]

• Generate SPARQL query

? - geo:isHighestPointOf - geo:State;
geo:State - geo:borders - geo:mississippi (geo:State);

Triples	

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix geo: <http://www.mooney.net/geo#>
select ?firstJoker ?p0 ?c1 ?p2 ?i3
where { { ?firstJoker ?p0 ?c1 .
filter (?p0=geo:isHighestPointOf) . }
?c1 rdf:type geo:State .
?c1 ?p2 ?i3 .
filter (?p2=geo:borders) .
?i3 rdf:type geo:State .
filter (?i3=geo:mississippi) . }

FREyA
[Damljanovic et al., 2013,2014]

• Determine return type
•  Result of a SPARQL query is a graph
•  Identify answer type to decide the result display

Show lakes in Minnesota.
NLQ	

FREyA
[Damljanovic et al., 2013,2014]

• Handle ambiguities via user interactions
•  Provide suggestions
•  Leverage re-enforcement learning to improve ranking of suggestions

• No parser error handling

NaLIR [Li and Jagadish, 2014]

• Controlled NLQ based on predefined grammar
• No query history

Query	
Tree	

Translator	
RDBMS	

InteracYve	
Communicator	

Data	index	&	
schema	
graph	

NLQ	 query	tree	

interacYons	

queries	
Dependency	

parser	

Parse	Tree	
Node	

Mapper	

Parse	Tree	
Structure	
Adjuster	

candidate	
mapping	 choice	

candidate	
query	trees	choice	

NaLIR [Li and Jagadish, 2014]

•  Mapping parse tree node to data schema and value based on WUP similarity [Wu
and Palmer, 1994]

•  Explicitly request user input on ambiguous mappings and interpretations

Query	
Tree	

Translator	
RDBMS	

InteracYve	
Communicator	

Data	index	&	
schema	
graph	

NLQ	 query	tree	

interacYons	

queries	
Dependency	

parser	

Parse	Tree	
Node	

Mapper	

Parse	Tree	
Structure	
Adjuster	

candidate	
mapping	 choice	

candidate	
query	trees	choice	

NaLIR [Li and Jagadish, 2014]

•  Automatically adjust parse tree structure into a valid parse tree

Query	
Tree	

Translator	
RDBMS	

InteracYve	
Communicator	

Data	index	&	
schema	
graph	

NLQ	 query	tree	

interacYons	

queries	
Dependency	

parser	

Parse	Tree	
Node	

Mapper	

Parse	Tree	
Structure	
Adjuster	

candidate	
mapping	 choice	

candidate	
query	trees	choice	

ROOT	

return	

author	

paper	

more	

Bob	

VLDB	

a�er	

2000	

ROOT	

return	

author	 Bob	

VLDB	 a�er	

2000	

more	

paper	

NaLIR [Li and Jagadish, 2014]
•  Automatically adjust parse tree structure into a valid parse tree
•  Further rewrite parse tree into one semantically reasonable

Query	
Tree	

Translator	
RDBMS	

InteracYve	
Communicator	

Data	index	&	
schema	
graph	

NLQ	 query	tree	

interacYons	

queries	
Dependency	

parser	

Parse	Tree	
Node	

Mapper	

Parse	Tree	
Structure	
Adjuster	

candidate	
mapping	 choice	

candidate	
query	trees	choice	

ROOT	

return	

author	

paper	

more	

Bob	

VLDB	

a�er	

2000	

ROOT	

return	

author	 Bob	

VLDB	 a�er	

2000	

more	

paper	

ROOT	

return	

author	

VLDB	 a�er	

2000	

more	

paper	

number	of	 number	of	

author	

paper	

VLDB	 a�er	

2000	

Bob	

NaLIR [Li and Jagadish, 2014]

•  1-1 translation from query tree to SQL

Query	
Tree	

Translator	
RDBMS	

InteracYve	
Communicator	

Data	index	&	
schema	
graph	

NLQ	 query	tree	

interacYons	

queries	
Dependency	

parser	

Parse	Tree	
Node	

Mapper	

Parse	Tree	
Structure	
Adjuster	

candidate	
mapping	 choice	

candidate	
query	trees	choice	

Learning NLQ à SQL [Palakurthi et al., 2015]

Stanford	
Parser	

Query	
TranslaYo

n	
RDBMS	

EnYty	
RelaYonship	
Schema	

NLQ	 queries	A�ribute	
Classifier	

Training	
Data	

CondiYon	
Random	
Fields	

trained	model	

Training	phase	

RunYme	

Classified	
a�ributes	

• Ad-hoc NLQ queries with explicit attribute mentions
•  Implicit restriction imposed by the capability of the system itself

Learning NLQ à SQL [Palakurthi et al., 2015]

• Explicit attributes: attributes mentioned explicitly in the NLQ

List all the grades of all the students in Mathematics
NLQ	

Explicit	a�ributes:	
grade	and	student	

Implicit	a�ribute:	
course_name	

by	the	classifier	

Learning NLQ à SQL
[Palakurthi et al., 2015]

•  Learn to map explicit attributes in the NLQ to SQL clauses

Type	of	Feature	 Example	Feature	

Token-based	 isSymbol	

GrammaYcal	 POS	tags	and	grammaYcal	relaYons	

Contextual	 Tokens	preceding	or	following	the	current	token	

Other	 •  isA�ribute	
•  Presence	of	other	a�ributes	
•  Trigger	words	(e.g.	“each”)	

Features	Training	data	

Learning NLQ à SQL
[Palakurthi et al., 2015]

•  Learn to map explicit attributes in the NLQ to SQL clauses

Who	are	the	professors	teaching	more	than	2	courses?	

NLQ	
GROUP	BY	 HAVING	FROM	

Learning NLQ à SQL
[Palakurthi et al., 2015]

• Construct full SQL queries
•  Attributeà Clause Mapping
•  Identify joins based on ER diagram
•  Add missing implicit attributes via Concept Identification [Srirampur et al., 2014]

Who are the professors teaching more than 2 courses?

NLQ	
GROUP	BY	 HAVING	FROM	

SELECT professor_name
FROM COURSES,TEACH,PROFESSOR
WHERE course_id=course_teach_id
 AND prof_teach_id =prof_id
GROUP BY professor_name
HAVING COUNT(course_name) > 2

SQL	
Iden9fied based

ER schema

Learning NLQ à SQL
[Palakurthi et al., 2015]

• No parsing error handling
• No explicit ambiguity handling

What length is the Mississippi?
NLQ	

Implicit	a�ribute:	State	

Wrongly
iden9fied

NL2CM [Amsterdamer et al., 2015]

Query	
VerificaYon	

Query	
Generator	 OASIS	

Feedback	
GeneraYon	

Vocabularies	

NLQ	

interacYons	

Formal	
query	

IX	
Detector	

IX:	Individual	Expression	

Ontology	

Stanford	
Parser	

IX	Pa�erns	

General	
Query	

Generator	

OASIS-QL	
triples	

SPARQL	
triples	 Crowd	mining	engine	

• Controlled NLQ based on predefined types (e.g. no “why”
questions)

• Query verification with feedback
• No query history

NL2CM [Amsterdamer et al., 2015]

• Map parse tree with Individual Expression (IX) patterns and
vocabularies

•  Lexical individuality: Individual terms convey certain meaning
•  Participant individuality: Participants or agents in the text that that

are relative to the person addressed by the request
•  Synctatic individuality: Certain syntactic constructs in a sentence.

What are the most interesting places near Forest Hotel, Buffalo that we should visit?

NL2CM [Amsterdamer et al., 2015]

• Map parse tree with Individual Expression (IX) patterns and
vocabularies

•  Lexical individuality: Individual terms convey certain meaning
•  Participant individuality: Participants or agents in the text that that

are relative to the person addressed by the request
•  Synctatic individuality: Certain syntactic constructs in a sentence.

What are the most interesting places near Forest Hotel, Buffalo that we should visit?

$x	interesYng	 	[]	visit	$x	

Opinion	Lexicon	

NL2CM [Amsterdamer et al., 2015]

• Map parse tree with Individual Expression (IX) patterns and
vocabularies

• Processing the general parts of the query with FREyA system
•  Interact with user to resolve ambiguities

What are the most interesting places near Forest Hotel, Buffalo that we should visit?

$x	interesYng	 	[]	visit	$x	

Opinion	Lexicon	

$x	near	Forest	Hotel,_Buffalo,_NY	

User	interacYon	

$x	instanceOf	Place	

NL2CM [Amsterdamer et al., 2015]

• No parsing error handling
• Return error for partially interpretable queries
• SPARQL + OASIS-QL triples à a complete OASIS-QL query

$x	interesYng	
	[]	visit	$x	

$x	near	Forest	Hotel,_Buffalo,_NY	
$x	instanceOf	Place	

SELECT VARIABLES
WHERE
 {$x instanceOf Place.
 $x near Forest_Hotel,_Buffalo,_NY}
SATISFYING
 {$x hasLabel “interesting”}
 ORDER BY DESC(SUPPORT)
 LIMIT 5
 AND
 { [] visit $x}
 WITH SUPPORT THRESHOLD = 0.1

NL2CM [Amsterdamer et al., 2015]

Query	
VerificaYon	

Query	
Generator	 OASIS	

Feedback	
GeneraYon	

Vocabularies	

NLQ	

interacYons	

Formal	
query	

IX	
Detector	

IX:	Individual	Expression	

Ontology	

Stanford	
Parser	

IX	Pa�erns	

General	
Query	

Generator	

OASIS-QL	
triples	

SPARQL	
triples	 Crowd	mining	engine	

• Handling ambiguity via user input

ATHANA [Saha et al., 2016]
•  Permit ad-hoc queries

•  No explicit constraints on NLQ
•  Implicit limit on expressivity of NLQs by query expressivity limitation (e.g.

nested query with more than 1 level)
•  No query history

NLQ	Engine	 Query	
TranslaYon	 Databases	

Domain	
Ontology	

NLQ	
OQL	with	NL	
explanaYons	

Top	
ranked	
SQL	
query	

SQL	queries	with	
NL	explanaYons	

user-selected	SQL	query	

TranslaYon	
Index	

ATHANA [Saha et al., 2016]
•  Annotate NLQ into evidences à No explicit parsing
•  Handle ambiguity based on translation index and domain ontology

Key Entries

“Alibaba”	

“Alibaba	Inc”	

“Alibaba	Incorporated”	

“Alibaba	Holding”	

…	

Company.name:	Alibaba	Inc	

Company.name:	Alibaba	Holding	Inc.	

Company.name:	Alibaba	Capital	Partners	

…	

Transla4on	Index	

“InvesYments”	

“invesYment”	

PersonalInvestiment

InstitutionalInvestiment
…	 …	

Databases	
Data	
Value	

Domain	Ontology	

Metadata	
Data	

ATHANA [Saha et al., 2016]

ATHANA [Saha et al., 2016]

Show me restricted stock investments in Alibaba since 2012 by year

Holding.type
Transaction.type
InstitutionalInvestment.type
…

PersonalInvestment
InstitutionalInvestment
VCInvestment
…

Company.name:Alibaba Inc.
Company.name:Alibaba Holding Inc.
…

Transaction.reported_year
Transaction.purchase_year
InstitutionalInvestment.
reported_year
…

indexed	value	 indexed	value	metadata	 metadata	Yme	range	

“since	2012”,	“year”	

InsYtuYonal	
investment	

Investment	

Investee	

type	

Reported_
year	

name	

“investments”	 “restricted	stock”	

“since	2012”,	“year”	

“Alibaba”	

Investee	Company	

investedIn	“in”	

unionOf	

Is-a	

InsYtuYonal	
investment	

Investment	

Investee	

type	

Reported_
year	

name	

“investments”	 “restricted	stock”	

“Alibaba”	

Investee	Company	

investedIn	“in”	

issuedBy	

Is-a	

unionOf	

Security	

Evidence	

Interpreta4on	trees	

ATHANA [Saha et al., 2016]

•  Ontology Query Language
•  Intermediate language over domain ontologies
•  Separate query semantics from underlying data stores
•  Support common OLAP-style queries

ATHANA [Saha et al., 2016]

•  1-1 translation from interpretation tree to OQL
•  1-1 translation from OQL to SQL per relational schema

SELECT Sum(oInstituionalINvestment.amount),
 oInstitutionalInvestment.reported_year
FROM InstitutionalInvestment OInstitutionalInvestment,
 InvesteeCompany oInvesteeCompany
WHERE oInstitutionalInvestment.type = “restricted_stock”,
 oInstitutionalInvestment.reported_year >= ‘2012’
 oInstitutionalInvestment.reported_year >= Inf,
 oInvesteeCompany.name = (‘Alibaba Holdings Ltd.’, ‘Alibaba Inc.’, ‘Alibaba Capital
Partners’},
 oInstitionalInvestmentàisaàInvestedInàunionOf_SecurityàissuedBy=oInvesteeCompany
GROUP BY oInstituionalInvestment.reported_year

Database	1	 Database	2	 Database	3	 …	

SQL		
Statement1	

SQL		
Statement2	

SQL		
Statement3		

SQL		
Statement	…		

NLIDBs Summary
Systems	 Scope	of	NLQ	Support	 Capability	

	
State	 Parsing	Error	Handling	

Controlled	 Ad-hoc*	 Fixed	 Self-improving	 Stateless	 Stateful	 Auto-correcYon	 InteracYve-correcYon	

PRECISE	 	

NLPQC	

NaLIX	

FREyA	

NaLIR	

NL2CM	

ML2SQL	

ATHANA	 N/A	 N/A	

*	Implicit	limitaYon	by	system	capability	

NLIDBs Summary – Cont.
Systems	 Ambiguity	Handling	 Query	Construc4on	

	
Target	Language	

AutomaYc	 InteracYve	 Rule-based	 Machine-learning	

PRECISE	 	 SQL	

NLPQC	 SQL	

NaLIX	 (Schema-free)	XQuery	

FREyA	 SPARQL	

NaLIR	 SQL	

NL2CM	 OASIS-QL	

ML2SQL	 																						*	 SQL	

ATHANA	 OQL	

*	ParYally	

Relationship to Semantic Parsing

Query	
Understanding	

NLQ	

Domain	
knowledge	

Query	
TranslaYon	

interpretaYons	

queries	

Data	
store	

SemanYc	Parser	

NL	Sentence	

SemanYc	
parsing	results		

Training	
data	

ML	
Model	

SemanYc	parsing	can	be	
used	to	build	NLIDB	

query	results	

NLIDB	 SemanYc	Parsing	

Relationship to Question Answering

Query	
Understanding	

NLQ	

Domain	
knowledge	

Query	
TranslaYon	

interpretaYons	

database	queries	

Data	
store	

Similar	
techniques	

query	results	

Query	
Understanding	

NLQ	

Query	
TranslaYon	

interpretaYons	

Document	search	queries	

top	results	

Document	
CollecYon	

Domain	
knowledge	

NLIDB	 QuesYon	Answering	

Open Challenges and
Opportunities

Querying Natural Language Data -
Review

• Covered
• Boolean queries
• Grammar-based schema and searches
• Text pattern queries
• Tree pattern queries

•  Developments beyond
• Keyword searches as input
• Documents as output

Querying Natural Language Data –
Challenges & Opportunities

• Grammar-based schemas
• Promising direction

• Challenges
• Queries w/o knowing the schema
• Many table schemes!
• Overlap and equivalence relationships

• Promising developments
• Paraphrasing relationships between text phrases, tree patterns,

DCS trees, etc.
• Development of resources (e.g. KBs) and shallow semantic

parsers to understand semantics
• Self-improving systems

Integrating & Transforming Natural
Language Data - Review

• Covered
• Transformations on text
• Lose and tight integration

• More work on
• Lose integration
• Optimizing query plans

Integrating & Transforming Natural Language
Data – Challenges & Opportunities

• Challenges
• Lack of schema, opacity of references, richness of

semantics and correctness of data
• Much to inspire from

• Work on transforming text
• Size and scope of resources for understanding text
• Progress in shallow semantic parsing
• Other areas such as translation and speech recognition

•  Opportunities
• Lots of demand for relevant tools
• More structure in natural language text than text (as a

seq. of tokens)
• Strong ties to deductive databases

NLIDB: Ideal and Reality
Systems	 Scope	of	NLQ	Support	 Capability	

	
State	 Parsing	Error	Handling	

Controlled	 Ad-hoc	 Fixed	 Self-improving	 Stateless	 Stateful	 Auto-correcYon	 InteracYve-correcYon	

PRECISE	 	 																				*	

NLPQC	

NaLIX	 										*	

FREyA	 													*		

NaLIR	 																				*	

NL2CM	 																						

ML2SQL	 													*	

ATHANA	 													*	 N/A	 N/A	

Ideal	
NLIDB	

*	Supported	at	limited	extent	

NLIDB: Ideal and Reality – Cont.
Systems	 Ambiguity	Handling	 Query	Construc4on	

	
Target	Language	

AutomaYc	 InteracYve	 Rule-based	 Machine-learning	

PRECISE	 *	 SQL	

NLPQC	 SQL	

NaLIX	 																*	 (Schema-free)	XQuery	

FREyA	 SPARQL	

NaLIR	 SQL	

NL2CM	 OASIS-QL	

ML2SQL	 																						*	 SQL	

ATHANA	 															*	 OQL	

Ideal	
NLIDB	

Polystore	language	

*	Supported	at	limited	extent	

NLIDB: Open Challenges

Query	
Understanding	

Query	
TranslaYon	

Data	
store	

Feedback	
GeneraYon	

Domain	
knowledge	

NLQ	 InterpretaYon	

interacYons	

queries	

queries	

•  EffecYvely	communicate	
limitaYons	to	users		

•  Engage	user	at	the	right	moment	
•  MulY-modal	interacYon	

•  Support	ad-hoc	NLQs	with	complex	
semanYcs	

•  Be�er	handle	parser	errors	
•  AutomaYcally	bridge	terminology	gaps		
•  AutomaYcally	idenYfy	and	resolve	

ambiguity	
•  MulYlingual/crosslingual	support	

•  Polystore	
•  Structured	data	s+	(un-/

semi-)structured	data	

•  Construct	domain	knowledge	with	
minimal	development	effort	

•  Construct	complex	queries	

•  Self-improving	
•  PersonalizaYon	
•  ConversaYonal	

Document	
CollecYon	

Transform		
&	integrate	

Natural Language DM & Interfaces:
Opportunities

Database	

Human	
Computer	
InteracYon	

Natural	
Language	
Processing	

Machine	
Learning	

References

•  [Agichtein and Gravano, 2003] Agichtein, E. and Gravano, L. (2003). Querying text databases for efficient
information extraction. In Proc. of the ICDE Conference, pages 113–124, Bangalore, India.

•  [Agrawal et al., 2008] Agrawal, S., Chakrabarti, K., Chaudhuri, S., and Ganti, V. (2008). Scalable ad-hoc entity
extraction from text collections. PVLDB, 1(1):945–957.

•  [Amsterdamer et al., 2015] Amsterdamer, Y., Kukliansky, A., and Milo, T. (2015). A natural language interface for
querying general and individual knowledge. PVLDB, 8(12):1430–1441.

•  [Andor et al., 2016] Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and
Collins, M. (2016). Globally normalized transition-based neural networks. CoRR, abs/1603.06042.

•  [Berant et al., 2013] Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on freebase from
question-answer pairs. In Proc. of the EMNLP Conference, volume 2, page 6.

•  [Bertino et al., 2012] Bertino, E., Ooi, B. C., Sacks-Davis, R., Tan, K.-L., Zobel, J., Shidlovsky, B., and
Andronico, D. (2012). Indexing techniques for advanced database systems, volume 8. Springer Science &
Business Media.

•  [Broder et al., 2003] Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., and Zien, J. (2003). Efficient query
evaluation using a two-level retrieval process. In Proc. of the CIKM Conf., pages 426–434. ACM.

•  [Cafarella and Etzioni, 2005] Cafarella, M. J. and Etzioni, O. (2005). A search engine for natural language
applications. In Proc. of the WWW conference, pages 442–452. ACM.

•  [Cafarella et al., 2007] Cafarella, M. J., Re, C., Suciu, D., and Etzioni, O. (2007). Structured querying of web
text data: A technical challenge. In Proc. of the CIDR Conference, pages 225–234, Asilomar, CA.

•  [Cai et al., 2005]Cai, G., Wang, H., MacEachren, A. M., Tokensregex: Defining cascaded regular expressions
over tokens. Technical Report CSTR-2014-02, Department of Computer Science, Stanford University.

References – Cont.

•  [Chaudhuri et al., 1995] Chaudhuri, S., Dayal, U., and Yan, T. W. (1995). Join queries with external text sources:
Execution and optimization techniques. In ACM SIGMOD Record, pages 410–422, San Jose, California.

•  [Chaudhuri et al., 2004] Chaudhuri, S., Ganti, V., and Gravano, L. (2004). Selectivity estimation for string
predicates: Overcoming the underestimation problem. In Proc. of the ICDE Conf., pages 227–238. IEEE.

•  [Chen et al., 2000] Chen, Z., Koudas, N., Korn, F., and Muthukrishnan, S. (2000). Selectively estimation for
boolean queries. In Proc. of the PODS Conf., pages 216–225. ACM.

•  [Chu et al., 2007] Chu, E., Baid, A., Chen, T., Doan, A., and Naughton, J. (2007a). A relational approach to
incrementally extracting and querying structure in unstructured data. In Proc. of the VLDB Conference.

•  [Chubak and Rafiei, 2010] Chubak, P. and Rafiei, D. (2010). Index Structures for Efficiently Searching Natural
Language Text. In Proc. of the CIKM Conference.

•  [Chubak and Rafiei, 2012] Chubak, P. and Rafiei, D. (2012). Efficient indexing and querying over syntactically
annotated trees. PVLDB, 5(11):1316–1327.

•  [Codd, 1974] Codd, E. (1974). Seven steps to rendezvous with the casual user. In IFIP Working Conference
Data Base Management, pages 179–200.

•  [Ferrucci, 2012] Ferrucci, D. A. (2012). Introduction to ”this is watson”. IBM Journal of Research and
Development, 56(3):1.

•  [Gonnet and Tompa, 1987] Gonnet, G. H. and Tompa, F. W. (1987). Mind your grammar: a new approach to
modelling text. In Proc. of the VLDB Conference, pages 339–346, Brighton, England.

•  [Gyssens et al., 1989] Gyssens, M., Paredaens, J., and Gucht, D. V. (1989). A grammar-based approach
towards unifying hierarchical data models (extended abstract). In Proc. of the SIGMOD Conference, pages
263–272, Portland, Oregon.

References – Cont.

•  [Jagadish et al., 1999] Jagadish, H., Ng, R. T., and Srivastava, D. (1999). Substring selectivity estimation. In
Proc. of the PODS Conf., pages 249–260. ACM.

•  [Jain et al., 2008] Jain, A., Doan, A., and Gravano, L. (2008). Optimizing SQL queries over text databases. In
Proc. of the ICDE Conference, pages 636–645, Cancun, Mexico.

•  [Kaoudi and Manolescu, 2015] Kaoudi, Z. and Manolescu, I. (2015). Rdf in the clouds: a survey. The VLDB
Journal, 24(1):67–91.

•  [Lewis and Steedman, 2013] Lewis, M. and Steedman, M. (2013). Combining distributional and logical
semantics. Transactions of the Association for Computational Linguistics, 1:179–192.

•  [Li and Jagadish, 2014] Li, F. and Jagadish, H. V. (2014). Constructing an interactive natural language interface
for relational databases. PVLDB, 8(1):73–84.

•  [Li et al., 2007] Li, Y., Yang, H., and Jagadish, H. V. (2007). Nalix: A generic natural language search
environment for XML data. ACM Trans. Database Systems, 32(4).

•  [Liang et al., 2011] Liang, P., Jordan, M. I., and Klein, D. (2011). Learning dependency-based compositional
semantics. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 590–599. Association for Computational Linguistics.

•  [Lin and Pantel, 2001] Lin, D. and Pantel, P. (2001). Dirt - discovery of inference rules from text. In Proc. of the
KDD Conference, pages 323–328.

•  [Rafiei and Li, 2009] Rafiei, D. and Li, H. (2009). Data extraction from the web using wild card queries. In Proc.
of the CIKM Conference, pages 1939–1942.

•  [Ravichandran and Hovy, 2002] Ravichandran, D. and Hovy, E. (2002). Learning surface text patterns for a
question answering system. In Proc. of the ACL Conference.

References – Cont.

•  [Popescu et al., 2004] Popescu et al., A. (2004). Modern natural language interfaces to databases: Composing
statistical parsing with semantic tractability. In Proc. of the COLING Conference.

•  [Saha et al., 2016] Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U. F., Mittal, A. R., and O¨ zcan, F.
(2016). Athena: An ontology-driven system for natural language querying over relational data stores. PVLDB,
9(12):1209–1220.

•  [Salminen and Tompa, 1994] Salminen, A. and Tompa, F. (1994). PAT expressions: an algebra for text search.

•  Acta Linguistica Hungarica, 41(1):277–306.

•  [Stratica et al., 2005] Stratica, N., Kosseim, L., and Desai,

•  B. C. (2005). Using semantic templates for a natural language interface to the cindi virtual library. Data and
Knowledge Engineering, 55(1):4–19.

•  [Suchanek and Preda, 2014] Suchanek, F. M. and Preda,

•  N. (2014). Semantic culturomics. Proc. of the VLDB Endowment, 7(12):1215–1218.

•  [Tague et al., 1991] Tague, J., Salminen, A., and McClellan, C. (1991). A complete model for information
retrieval systems. In Proc. of the SIGIR Conference, pages 14–20, Chicago, Illinois.

•  [Tian et al., 2014] Tian, R., Miyao, Y., and Matsuzaki, T. (2014). Logical inference on dependency-based
compositional semantics. In Proc. of the ACL Conference, pages 79–89.

•  [Wu and Palmer, 1994] Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. In ACL

•  [Valenzuela-Escarcega et al., 2016] Valenzuela-Escarcega, M. A., Hahn-Powell, G., and Surdeanu, M. (2016).
Odin’s runes: A rule language for information extraction. In Proc. of the Language Resources and Evaluation
Conference (LREC).

•  [Xu, 2014] Xu, W. (2014). Data-driven approaches for paraphrasing across language variations. PhD thesis,
New York University.

Relevant Tutorials

• Semantic parsing
•  Percy Liang: “natural language understanding: foundations and state-

of-the-art”, ICML 2015.

•  Information extraction
•  Laura Chiticariu, Yunyao Li, Sriram Raghavan, Frederick Reiss:

“Enterprise information extraction: recent developments and open
challenges.” SIGMOD 2010

• Entity resolution
•  Lise Getoor and shwin Machanavajjhala: “Entity Resolution for Big

Data” KDD 2013

