
1

1

Hashing

• Given a search key, can we guess its
location in the file?

• Goal:
– Support equality searches in one disk access!

• Method: hash keys into addresses
key � page

2

Types of Hashing

• What does H(K) point to:
– A cell of a table in memory where K* is stored

(internal hashing)
– A bucket on disk where K* is stored (external

hashing)
• A bucket consists of 1 or more pages.

• Hash file maintenance:
– Static hashing

• File size is fixed

– Dynamic & extensible hashing
• File size can grow

2

3

Hashing to a File

…
…

r
re

co
rd

s

N
sl

ot
s*

H(K)

Key

*Slots store either the actual records
(clustered index) or (key, ptr) pairs
(unclustered index)

4

• Input: a field of a record; usually its key K
(student id, name, …)

• Compute index function H(K)

H(K): K → A

to find the address of K* .

H(K)=A is the address of the record (or index
entry) with key K

Hash Function

3

5

Hashing Function 1

Student id Name address
0234134 John 4
0349423 Mary 3
0428421 Jean 1
1324532 Sandy 2
2374734 Randy 4

Let some digits of the key, for example the last digit
of the student id, represent the location.

6

• Key is student id (six digits), we have
100,000 record positions (0 – 99,999)

• H(K): student_id mod 99999

085768 → 085768 mod 99999 = 85768
134281 → 134281 mod 99999 = 34282
101004 → 101004 mod 99999 = 1005

Hash Function 2

4

7

• Folding
– Replace the key by numeric code

• ALBERT = 01 22 02 05 18 20

– Fold and Add
• 0122 + 0205 + 1820 = 2147

– Take the modulo relative to the size of address space
• 2147 mod 101 = 26

• Midsquare: Square key and take middle

– (453)2 = 205209 → 52

• Radix Transformation

– (453)10 = (382)11 → 382 mod 99 = 85

More Hash Functions

8

Hashing Function 3

• concatenate the alphabetic positions of all letters,
partition the result into equal parts, multiply each
part by its position, fold and add, divide the result
by the size of the address space (a prime number)
and take the reminder.

Name Address

John 10 15 08 14 � (1015*1 + 0814*2) mod 43 = 20

Mary 13 01 18 25 � (1301*1 + 1825*2) mod 43 = 6

Jean 10 05 01 14 � (1005*1 + 0114*2) mod 43 = 29

Sandy 19 01 14 04 25 � (1901*1 + 1404*2 + 0025*3) mod 43 = 11

Randy 18 01 14 04 25 � (1801*1 + 1404*2 + 0025*3) mod 43 = 40

5

9

Hash Function Design Issues
• Key space

– The set of all possible values for keys

• Address space (N)
– The set of all storage units

– Physical location of file

• In general
– Address space must accommodate all records in

file

– Address space is usually much smaller than key
space

10

• Randomizing
– Records are randomly spread over the whole

storage space

• Collision
– Two different keys may be hashed into the

same address (synonyms)

– To deal with it, two ways:
• choose hashing functions that reduce collisions

• rearrange the storage of records to reduce collisions

Features of Hashing

6

11

Good and Bad Functions

A
B
C
D
E
F
G

1
2
3
4
5
6
7
8
9
10

A
B
C
D
E
F
G

1
2
3
4
5
6
7
8
9
10

A
B
C
D
E
F
G

1
2
3
4
5
6
7
8
9
10

Best Worst Acceptable

12

• Perfect hash function
– One-to-one: No synonyms
– Onto: Key space = Address space
– Not feasible for large and active files

• Desirable hashing function
– Minimize collisions
– Relatively smaller address space

• Tradeoff
– The larger the address space, the easier it is to

avoid collisions
– The larger the address space, the worse the

storage utilization becomes

Choice of Hash Function

7

13

A Hashing Function

1. Convert the key to a number (if it is not)
key � K

2. Compute an address from the number
address = K mod M

• Suggestion: Choose M to be a prime
number (why?).

14

Collisions

• A key is mapped to an address that is full.
• Collision Resolution: Where to store the

overflow key?
– Static methods

• Linear probing
• Double hashing
• Separate overflow

– Dynamic methods
• Extendable hashing
• Linear hashing

8

15

Linear Probing

• For each key, generate a sequence of
addresses A0, A1, A2, …
A0 = hash(key) mod M
A i+1 = [A i + step] mod M

M : file size (max # of addresses)
step: a constant

16

Example
Key hash(key) = A0 A1 A2 A3 A4

Mozart 1 2 3 4 5

Tchaikovsky 1 2 3 4 5

Ravel 3 4 5 6 0

Beethoven 5 6 0 1 2

Mendelssohn 5 6 0 1 2

Bach 3 4 5 6 0

Greig 3 4 5 6 0

0

1

2

3

4

5

6

M = 7
step = 1

9

17

Linear Probing - Problems

• Performance degradation as more rows are
added.

• Waste of space as more rows are deleted.

• These are problems for all static methods

• Solutions
– Reorganization

– Use a dynamic method

18

Extendable Hashing

• The address space is changed dynamically.

• The hash function is adjusted to
accommodate the change.

• A common family of hash functions
– hk(key) = h(key) mod 2k (use the last k bits of

h(key))

– At any given time a unique hash, hk , is used

10

19

Extendable Hashing - Example
v h(v)

pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111

The size of the directory
corresponds to the currently
active hash function hk

Location
mechanism

directory

00

10

11

01

buckets

hk(key) = h(key) mod 2k

k=2 � directory size = 22 = 4
(use last k=2 bits of h(key))

20

Example (con’ t)

mary, bill

john, vince

pete, jane

karen

B0

B1

B2

B3

h2

v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111
sol 10001

Next action: insert ‘sol’ , where h(sol) = 10001.

sol, can’ t be stored here since the bucket is full

11

21

Example (con’ t)
Solution:

1. Split the overfilled bucket
2. Switch to h3 (double the directory)

hk(key) = h(key) mod 2k

k=3 � directory size = 23 = 8
(use last k=3 bits of h(key))

3. Update the pointers

current_hash identifies
current hash function.

mary, bill

john, sol

pete, jane

karen

vince

B0

B1

B2

B3

B4

3

Current hash

directory

000

010

011

001

v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111
sol 10001

100

110

111

101

22

Example (con’ t)

• Next action: Insert judy,
where h(judy) = 00110

• B2 overflows, but directory
need not be extended

Need a mechanism for deciding whether the directory has to be
doubled.

mary, bill

john, sol

pete, jane

karen

vince

B0

B1

B2

B3

B4

3

Current hash

000

010

011

001

100

110

111

101

12

23

Example (con’ t)
mary, bill

john, sol

pete, jane

karen

vince

B0

B1

B2

B3

B4

3

Current hash

2

3

2

2

3

Bucket level

Add a bucket level –

000

010

011

001

100

110

111

101

if current_hash > bucket_level[i],
then do not enlarge directory

24

Example (con’ t)
mary, bill

john, sol

pete, jane

karen

vince

B0

B1

B2

B3

B4

3

Current hash

judy,

2

3

3

2

3

B5
3

000

010

011

001

100

110

111

101

v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111
sol 10001
judy 00110

jane

X

13

25

v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111

sol 10001
judy 00110

26

Hash Indices - Summary

• Range search is not supported.
– Since adjacent elements in range might hash to

different buckets

• Partial key search is not supported.
– Entire key must be provided

• But, an equality search on average takes
only 1 disk access

14

27

Indexing in Oracle
(un-clustered index)

• Create an un-clustered index on author:

CREATE TABLE book (
callnochar(10),
author char(20),
title char(30),
year char(4),
PRIMARY KEY (callno)
);

CREATE INDEX authidx ON book (author);

• Result: an un-clustered dense index on author.

28

Indexing in Oracle
(clustered index on primary key)

• Create a clustered index on callno:

CREATE TABLE book (
callno char(10),
author char(20),
title char(30),
year char(4),
PRIMARY KEY (callno)
)
ORGANIZATION INDEX;

• This syntax allows a clustered index on the
primary key of the table only.

15

29

Indexing in Oracle
(clustered index on non-primary key columns)

• Create a clustered index on author:

CREATE TABLE book (
callnochar(10),
author char(20),
title char(30),
year char(4),
PRIMARY KEY (callno)
)
cluster authcl(author);

CREATE INDEX authidx on cluster authcl;

• An Oracle cluster may contain rows from more
than one table.

30

Indexing in DB2

• Create un-clustered indexes on callno and author:

CREATE INDEX callno_idx on book (callno)
CREATE INDEX auth_idx on book (author)

• Can make (only) one index clustered:

CREATE INDEX auth_idx on book (author) cluster

Data must be (preferably) sorted on clustering column(s) in the OS file.

16

Choosing an Index

Ex 1 SELECT E. Id
FROM Employee E
WHERE E.Salary < :upper AND E.Salary > :lower

- a range search on Salary.
- Suppose the primary key is employee id; it is likely that

there is a main, clustered index on that attribute that is
of no use for this query.

- Choose a secondary, B+ tree index with search key Salary

32

Choosing an Index

Ex 2 SELECT T.StudId
FROM Transcript T
WHERE T.Grade = :grade

- an equality search on Grade.
- Suppose the primary key is (StudId, Semester, CrsCode); it is

likely that there is a main, clustered index on these attributes
that is of no use for this query.

- Choose a secondary, B+ tree or hash index with search key
Grade

17

33

Choosing an Index
Ex 3 SELECT T.CrsCode, T.Grade

FROM Transcript T
WHERE T.StudId = :id AND T.Semester = ‘F2000’

- Equality search on StudId and Semester.
- If the primary key is (StudId, Semester, CrsCode) it is
likely that there is a main, clustered index on this
sequence of attributes.

- If the main index is a B+ tree it can be used for this search.
- If the main index is a hash it cannot be used for this

search. Choose B+ tree or hash with search key StudId
or (StudId, Semester)

34

Choosing an Index

Ex 3 (con’ t)
SELECT T.CrsCode, T.Grade
FROM Transcript T
WHERE T.StudId = :id AND T.Semester = ‘F2000’

- Suppose Transcript has primary key (CrsCode, StudId, Semester).
Can this index be useful (independent of being hash or B+ tree)?

