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Abstract

The computation of the �rst complete approxima-
tions of game-theoretic optimal strategiesfor full-
scalepoker is addressed.Severalabstractiontech-
niquesare combined to represent the gameof 2-
playerTexasHold'em, having size �������
	���
 , using
closely relatedmodels eachhaving size ����������
 .
Despitethe reduction in size by a factor of 100
billion, the resultingmodelsretain the key prop-
ertiesandstructure of the real game. Linear pro-
grammingsolutionsto theabstractedgameareused
to createsubstantiallyimprovedpoker-playingpro-
grams,ableto defeatstronghumanplayersandbe
competitive against world-classopponents.

1 Intr oduction
Mathematical gametheorywasintroducedby JohnvonNeu-
mannin the1940s,andhassincebecomeoneof thefounda-
tionsof modern economics [vonNeumannandMorgenstern,
1944]. Von Neumann usedthe game of poker as a basic
model for 2-player zero-sumadversarialgames,andproved
the�rst fundamental result,thefamousminimaxtheorem. A
few yearslater, JohnNashaddedresultsfor � -player non-
cooperative games,for which he later won the Nobel Prize
[Nash,1950]. Many decisionproblemscanbemodeledusing
gametheory, andit hasbeenemployed in a wide variety of
domains in recentyears.

Of particular interestis theexistenceof optimal solutions,
or Nashequilibria. An optimal solutionprovidesa random-
izedmixed strategy, basicallya recipeof how to play in each
possiblesituation. Using this strategy ensuresthat an agent
will obtainat leastthegame-theoreticvalueof thegame,re-
gardlessof the opponent's strategy. Unfortunately, �ndin g
exactoptimal solutionsis limited to relatively smallproblem
sizes,andis notpractical for mostrealdomains.

Thispaper explorestheuseof highlyabstractedmathemat-
ical modelswhichcapturethemostessentialpropertiesof the
realdomain, suchthatanexactsolutionto thesmallerprob-
lem providesa usefulapproximation of an optimal strategy
for therealdomain. Theapplicationdomainusedis thegame
of poker, speci�cally TexasHold'em,themostpopular form
of casinopoker andthe poker variantusedto determine the
world championat theannual World Seriesof Poker.

Dueto thecomputationallimitationsinvolved,onlysimpli-
�ed pokervariationshavebeensolvedin thepast(e.g. [Kuhn,
1950; Sakaguchi andSakai,1992]). While theseareof the-
oretical interest,the samemethods arenot feasiblefor real
games, which are too large by many orders of magnitude
([Koller andPfeffer, 1997]).

[Shi and Littman, 2001] investigated abstractiontech-
niques to reducethelargesearchspaceandcomplexity of the
problem, usinga simpli�ed variant of poker. [Takusagawa,
2000] creatednear-optimal strategies for the play of three
speci�c Hold'em�ops andbettingsequences. [Selby, 1999]
computed an optimal solution for the abbreviated gameof
pre�op Hold'em.

Using new abstractiontechniques, we have producedvi-
able “pseudo-optimal” strategies for the gameof 2-player
TexasHold'em. Theresultingpoker-playing programshave
demonstrateda tremendous improvement in performance.
Whereasthepreviousbestpokerprogramswereeasilybeaten
by any competenthumanplayer, thenew programsarecapa-
ble of defeatingvery strongplayers,andcanhold their own
against world-classopposition.

Although somedomain-speci�c knowledge is an assetin
creatingaccuratereduced-scalemodels, analogous methods
canbe developedfor many other imperfect informationdo-
mainsand generalized gametrees. We describe a general
methodof problem reformulationthat permits the indepen-
dentsolutionof sub-treesby estimatingtheconditional prob-
abilitiesneededasinput for eachcomputation.

Thispapermakesthefollowing contributions:

1. Abstraction techniques that can reduce an ��������	���


poker searchspaceto a manageable ����������
 , without
losingthemostimportant propertiesof thegame.

2. A poker-playing program that is a major improvement
over previousefforts, andis capableof competing with
world-classopposition.

2 GameTheory
Gametheoryencompassesall formsof competition between
two or more agents. Unlike chessor checkers, poker is a
gameof imperfectinformationandchanceoutcomes. It can
berepresentedwith animperfectinformationgametreehav-
ing chancenodesanddecisionnodes, whicharegroupedinto
informationsets.



Sincethe nodes in this tree are not independent,divide-
and-conquer methods for computing sub-trees(suchas the
alpha-betaalgorithm) arenotapplicable. For amoredetailed
description of imperfectinformationgametreestructure,see
[Koller andMegiddo, 1992].

A strategy is a setof rules for choosingan actionat ev-
ery decisionnodeof the tree. In general, this will bea ran-
domizedmixedstrategy, which is a probability distribution
over thevariousalternatives. A playermustusethesamepol-
icy acrossall nodesin the sameinformationset,sincefrom
thatplayer's perspective they areindistinguishable from each
other(differing only in thehiddeninformationcomponent).

Theconventional method for solvingsucha problem is to
convert thedescriptiverepresentation, or extensiveform, into
a systemof linear equations, which is thensolved by a lin-
earprogramming (LP) systemsuchastheSimplex algorithm.
The optimal solutions are computed simultaneously for all
players,ensuring thebestworst-caseoutcomefor eachplayer.

Traditionally, the conversionto normal form wasaccom-
paniedby an exponentialblow-up in the size of the prob-
lem, meaning that only very small probleminstancescould
besolvedin practice. [Koller et al., 1994] described analter-
nateLP representation,calledsequenceform, which exploits
the common property of perfectrecall (whereinall players
know thepreceding historyof thegame), to obtaina system
of equations andunknowns that is only linear in the sizeof
the game tree. This exponential reduction in representation
hasre-openedthe possibilityof usinggame-theoreticanaly-
sis for many domains. However, sincethe game tree itself
canbe very large, the LP solutionmethod is still limited to
moderateproblem sizes(normally lessthana billion nodes).

3 TexasHold'em
A game(or hand) of TexasHold'em consistsof four stages,
eachfollowed by a round of betting:

Pre�op: Eachplayeris dealttwo privatecardsfacedown
(theholecards).

Flop: Threecommunitycards (shared by all players)are
dealtfaceup.

Turn: A singlecommunity cardis dealtfaceup.
River: A �nal community cardis dealtfaceup.
After thebetting, all active playersreveal their holecards

for the showdown. The playerwith the best� ve-cardpoker
handformedfrom their two private cardsandthe� ve public
cardswins all themoney wagered(tiesarepossible).

The gamestartsoff with two forcedbets(the blinds) put
into thepot. Whenit is a player's turn to act, they mustei-
therbet/raise(increasetheirinvestment in thepot), check/call
(matchwhattheopponenthasbetor raised),or fold (quit and
surrenderall money contributedto thepot).

Thebest-known non-commercialTexasHold'em program
is Poki. It hasbeenplayingonline since1997andhasearned
an impressive winning record, albeit against generally weak
opposition [Billings et al., 2002]. The system's abilities
arebasedon enumerationandsimulationtechniques,expert
knowledge,andopponentmodeling. The program's weak-
nessesare easily exploited by strongplayers,especiallyin
the2-player game.

Figure1: Branchingfactorsfor Hold'em andabstractions.

4 Abstractions
TexasHold'em hasan easily identi�able structure, alternat-
ing betweenchance nodesandbettingroundsin four distinct
stages.A high-level view of theimperfect informationgame
treeis shown in Figure1.

Hold'em canbereformulatedto producesimilar but much
smallergames. The objective is to reduce the scaleof the
problem without severelyalteringthe fundamentalstructure
of the game,or the resultingoptimal strategies. There are
many waysof doingthis,varying in theoverall reduction and
in theaccuracy of theresultingapproximation.

Someof themostaccurateabstractionsincludesuit equiv-
alenceisomorphisms(offeringa reduction of atmosta factor
of ��������� ), rankequivalence(only undercertainconditions),
andranknear-equivalence. Theoptimalsolutionsto theseab-
stractedproblemswill eitherbeexactly thesameor will have
a smallboundederror, which we referto asnear-optimalso-
lutions.Unfortunately, theabstractions whichproduceanex-
actor near-exactreformulationdonot producethevery large
reductionsrequired to make full-scalepoker tractable.

A commonmethod for controlling the gamesize is deck
reduction. Using lessthanthestandard52-carddeckgreatly
reducesthebranching factorat chance nodes.Othermethods
includereducing thenumber of cardsin a player's hand (e.g.
from a 2-cardhandto a 1-cardhand), andreducing thenum-
berof board cards(e.g. a 1-card �op), aswasdoneby [Shi
andLittman, 2001] for the gameof Rhode Island Hold'em.
[Koller andPfeffer, 1997] usedsuchparametersto generatea
wide varietyof tractablegamesto solve with their Galasys-
tem.

We have useda number of small and intermediate sized
games, ranging from eightcards(two suits,four ranks)to 24
cards(threesuits, eight ranks) for the purpose of studying
abstractionmethods,comparing theresultswith known exact
or near-optimal solutions.However, thesesmallergamesare
not suitablefor useasanapproximationfor TexasHold'em,
as the underlying structures of the gamesaredifferent. To
producegoodplayingstrategiesfor full-scalepoker, we look
for abstractions of therealgamewhichdonotalterthatbasic



structure.
The abstractiontechniquesusedin practicearepowerful

in termsof reducing the problem size, and subsumethose
previously mentioned. However, sincethey are also much
cruder, we call their solutions pseudo-optimal, to emphasize
that thereis no guaranteethat the resultingapproximations
will be accurate,or even reasonable. Somewill be low-risk
propositions,whileotherswill requireempirical testingto de-
termineif they havemerit.

4.1 Betting round reduction
Thestandardrulesof limit Hold'em allow for a maximum of
four betsperplayer perround.1 Thus in 2-player limit poker
thereare19 possiblebettingsequences,of which two do not
occurin practice.2 Of theremaining 17sequences,8 endin a
fold (leadingto a terminalnodein thegame tree),and9 end
in a call (carrying forward to the next chance node). Using

�
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�

, � �	�
��� , 
 �	
������ , � ��������� , � ����������� ,
andcapitallettersfor the secondplayer, the treeof possible
bettingsequencesfor eachround is:

kK kBf kBc kBrF kBrC kBrRf kBrRc kBrRrF kBrRrC
bF bC bRf bRc bRrF bRrC bRrRf bRrRc

We call this local collection of decisionnodes a betting
tree, andrepresent it diagramaticallywith a triangle.

With betting round reduction, eachplayer is allowed a
maximum of threebetsperround, thereby eliminating thelast
two sequencesin eachline. Theeffective branching factorof
thebettingtreeis reducedfrom nineto seven. This doesnot
appearto haveasubstantialeffect onplay, or ontheexpected
value(EV) for eachplayer. Thisobservationhasbeenveri�ed
experimentally. In contrast,we computed thecorresponding
post�op modelswith a maximum of two betsperplayerper
round, and found radical changesto the optimal strategies,
stronglysuggestingthatthatlevel of abstractionis notsafe.

4.2 Elimination of betting rounds
Large reductions in thesizeof a poker gametreecanbeob-
tainedby elimination of betting rounds. There are several
waysto do this, andthey generally have a signi�cant impact
on thenatureof thegame. First, thegame maybetruncated,
by eliminatingthe last round or rounds. In Hold'em, ignor-
ing thelastboardcardandthe�nal bettinground producesa
3-round model of the actual4-round game. The solutionto
the3-round model losessomeof thesubtletyinvolvedin the
trueoptimalstrategy, but thedegradationappliesprimarily to
advancedtacticson theturn. Thereis a smallereffect on the
�op strategy, andthestrategy for the�rst bettinground may
have no signi�cant changes,sinceit incorporatesall theout-
comesof two future bettingrounds. We usethis particular
abstractionto de�ne an appropriatestrategy for play in the
�rst round, andthuscall it a pre�op model(seeFigure2).

1Somerulesallow unlimited raiseswhenonly two playersare
involved.However, occasionswith morethanthreelegitimateraises
arerelatively rare,anddo not greatlyalteranoptimalstrategy.

2Technically, aplayermayfold eventhoughthereis nooutstand-
ing bet. This is logically dominatedby not folding, and therefore
doesnot occur in an optimal strategy, and is almostnever seenin
practice.

The effect of truncation canbe lessenedthrough the use
of expectedvalue leaf nodes. Insteadof endingthe game
abruptly andawarding the pot to the strongest handat that
moment, wecomputeanaverageconclusionover all possible
chanceoutcomes. For a 3-roundmodelending on the turn,
we roll-out all 44 possibleriver cards,assumingno further
betting (or alternately, assumingonebet per player for the
lastround). Eachplayeris awardeda fraction of thepot,cor-
responding to their probability of winning thehand. In a 2-
round pre�op model, weroll-out all 9902-cardcombinations
of theturnandriver.

Themostextremeform of truncation resultsin a 1-round
model, with noforesightof futurebettingrounds.Sinceeach
future round providesare�nement to theapproximation,this
will not re�ect a correctstrategy for the real game. In par-
ticular, bettingplansthat extendover more thanoneround,
suchas deferring the raiseof a very stronghand, are lost
entirely. Nevertheless,even thesesimplistic models canbe
usefulwhencombinedwith expectedvalueleafnodes.

Alex Selbycomputedanoptimalsolutionfor thegameof
pre�op Hold'em, whichconsistsof only the�rst bettinground
followedby an EV roll-out of the � ve board cardsto deter-
minethewinner [Selby, 1999]. Although therearesomese-
riouslimitationsin thestrategy basedon this 1-round model,
wehaveincorporatedtheSelbypre�op systemintooneof our
programs,PsOpti1, asdescribedlaterin this section.

In contrast to truncating rounds, we can bypasscertain
early stagesof the game. We frequently usepost�op mod-
els, which ignorethepre�op bettinground, andusea single
�x ed�op of threecards(seeFigure1).

It is natural to consider the idea of independent betting
rounds, whereeachphaseof thegame is treatedin isolation.
Unfortunately, thebettinghistory from previous rounds will
almostalwayscontain contextual informationthat is critical
to makingappropriatedecisions. Theprobability distribution
over the hands for eachplayeris strongly dependent on the
paththat led to that decisionpoint, so it cannot be ignored
without riskinga considerablelossof information.However,
the naive independenceassumptioncanbe viable in certain
circumstances,andwe do implicitly useit in the designof
PsOpti1to bridgethegapbetweenthe1-roundpre�op model
andthe3-roundpost�op model.

Another possibleabstractionweexploredwasmergingtwo
or morerounds into a singleround, suchascreatinga com-
bined2-cardturn/river. However, it is not clearwhat theap-
propriatebetsizeshouldbefor this compositeround. In any
case,thesolutionsfor thesemodels (overafull rangeof possi-
blebetsizes),all turnedout to besubstantiallydifferentfrom
their 3-roundcounterparts,andthemethodwasthereforere-
jected.

4.3 Composition of pre�op and post�op models

Although thenodesof animperfectinformationgametreeare
not independentin general,somedecomposition is possible.
For example, the sub-treesresulting from different pre�op
bettingsequencescannolongerhavenodesthatbelongto the



sameinformationset.3 Thesub-treesfor ourpost�op models
canbe computed in isolation,provided that the appropriate
preconditionsaregiven asinput. Unfortunately, knowing the
correct conditional probabilitieswould normally entail solv-
ing the whole game,so therewould be no advantageto the
decomposition.

For simple post�op models, we dispensewith the prior
probabilities. For the post�op models usedin PsOpti0and
PsOpti1, we simply ignore the implications of the pre�op
betting actions,and assumea uniform distribution over all
possiblehandsfor eachplayer. Different post�op solutions
werecomputedfor initial potsizesof two, four, six, andeight
bets(corresponding to pre�op sequenceswith zero,one,two,
or threeraises,but ignoring which playerinitially madeeach
raise).In PsOpti1, thefour post�op solutions aresimply ap-
pended to the Selby pre�op strategy (Figure 2). Although
thesesimplifying assumptionsaretechnicallywrong, there-
sultingplay is still surprisingly effective.

A betterway to composepost�op modelsis to estimate
the conditional probabilities,usingthe solutionto a pre�op
model. With a tractablepre�op model, we have a means of
estimatinganappropriatestrategy at theroot, andtherebyde-
terminetheconsequentprobability distributions.

In PsOpti2, a 3-round pre�op model was designed and
solved. The resultingpseudo-optimal strategy for the pre-
�op (which wassigni�cantly differentfrom the Selbystrat-
egy) wasusedto determine thecorresponding distribution of
hands for eachplayer in eachcontext. Thisprovidedthenec-
essaryinput parameters for eachof thesevenpre�op betting
sequences that carry over to the �op stage. Sinceeachof
thesepost�op models hasbeengiven (an approximation of)
theperfectrecall knowledgeof the full game, they arefully
compatible with eachother, andareproperly integratedun-
der the umbrella of thepre�op model (Figure2). In theory,
this shouldbeequivalent to computing themuchlarger tree,
but it is limited by the accuracy andappropriatenessof the
proposedpre�op bettingmodel.

4.4 Abstraction by bucketing
The most important method of abstractionfor the computa-
tion of ourpseudo-optimalstrategiesis calledbucketing. This
is an extension of the natural andintuitive concept that has
beenappliedmany timesin previousresearch(e.g. [Sklansky
andMalmuth, 1994] [Takusagawa, 2000] [Shi andLittman,
2001]). Thesetof all possiblehands is partitionedinto equiv-
alenceclasses(alsocalledbucketsor bins). A many-to-one
mapping functiondetermines which hands will be grouped
together. Ideally, the hands shouldbe groupedaccording to
strategic similarity, meaning that they canall beplayedin a
similarmannerwithoutmuchlossin EV.

If every hand was playedwith a particular pure strategy
(ie. only oneof theavailablechoices),thenaperfectmapping
function wouldgroupall handsthatfollow thesameplan,and

3To seethis, eachdecisionnodeof the treecanbe labeledwith
all the cardsknown to that player, andthe full paththat led to that
node.Nodeswith identicallabelsdiffer only in thehiddeninforma-
tion, andarethereforein thesameinformationset.Sincethebetting
history is differentfor thesesub-trees,noneof the nodes areinter-
dependent.

Figure2: Compositionof PsOpti1andPsOpti2.

17equivalenceclassesfor eachplayerwouldbesuf�cient for
eachbettinground. However, sincea mixedstrategy maybe
indicatedfor optimal play in somecases,we would like to
group hands thathave a similar probability distribution over
actionplans.

Oneobviousbut rather crudebucketingfunctionis togroup
all hands accordingto strength(ie. its rankwith respectto all
possiblehands,or the probability of currently being in the
lead).Thiscanbeimprovedby considering theroll-out of all
future cards,giving an (unweighted) estimateof the chance
of winningthehand.

However, this is only a one-dimensional view of hand
types, in what can be consideredto be an � -dimensional
spaceof strategies, with a vast number of different ways
to classify them. A superior practicalmethod would be to
project thesetof all handsontoatwo-dimensionalspacecon-
sisting of (roll-out) handstrengthand handpotential (sim-
ilar to the hand assessmentusedin Poki, [Billings et al.,
2002]). Clustersin theresultingscattergramsuggestreason-
ablegroupsof hands to betreatedsimilarly.

We eventually settledon a simple compromise. With �

availablebuckets,weallocate��� � to roll-out handstrength.
The number of handtypesin eachclassis not uniform; the
classesfor the strongest hands are smaller than thosefor
mediocre andweakhands,allowing for betterdiscrimination
of thesmallerfractionsof hands thatshouldberaisedor re-
raised.

Onespecialbucket is designatedfor handsthatarelow in
strengthbuthavehighpotential, suchasgood drawsto a�ush
or straight.This playsan important role in identifying good
hands to usefor bluf�ng (known assemi-bluffs in [Sklansky
andMalmuth, 1994]). Comparing post�op solutionsthatuse
six strengthbucketsto solutionswith � ve strength plus one
high-potentialbucket,weseethatmostbluffs in thelatterare
takenfrom thespecialbucket,which is sometimes playedin
the sameway as the strongest bucket. This con�rmed our
expectationsthatthehigh-potentialbucketwouldimprovethe
selectionof handsfor variousbettingtactics,andincreasethe
overall EV.



Figure3: Transitionprobabilities(six bucketsperplayer).

Thenumberof bucketsthatcanbeusedin conjunctionwith
a3-roundmodelis verysmall,typically six or sevenfor each
player(ie. 36 or 49 pairsof bucket assignments). Obviously
this resultsin averycoarse-grainedabstractgame,but it may
notbesubstantiallydifferent from thenumber of distinctions
an average humanplayermight make. Regardless, it is the
bestwe cancurrently do giventhecomputationalconstraints
of this approach.

The�nal thing needed to sever theabstractgamefrom the
underlying realgametreearethetransitionprobabilities. The
chancenodebetweenthe�op andturnrepresents aparticular
cardbeingdealtfrom theremaining stockof 45cards.In the
abstractgame,therearenocards,only buckets.Theeffectof
theturncardin theabstractgameis to dictatetheprobability
of moving from onepair of bucketson the�op to any pair of
bucketson the turn. Thusthe collectionof chancenodesin
thegame treeis representedby an � �

�

� 
 to � �

�

� 
 tran-
sition network as shown in Figure3. For post�op models,
this canbeestimatedby walking theentiretree,enumerating
all transitionsfor a smallnumber of characteristic �ops. For
pre�op models,the full enumeration is moreexpensive (en-
compassingall

�

��� � ����� ������� � �
	 ����
 possible�ops), soit
is estimatedeitherby sampling, or by (parallel) enumeration
of a truncatedtree.

For a 3-roundpost�op model,we cancomfortably solve
abstractgameswith up to seven buckets for eachplayer in
eachround. Changing thedistributionof buckets,suchassix
for the �op, seven for the turn, andeight for the river, does
not appear to signi�cantly affect thequality of thesolutions,
betteror worse.

The�nal linearprogramming solutionproducesa largeta-
ble of mixedstrategies(probabilitiesfor fold, call, or raise)
for everyreachablescenarioin theabstractgame. To usethis,
thepoker-playing programlooks for thecorrespondingsitua-
tion basedonthesamehandstrengthandpotentialmeasures,
andrandomly selectsanactionfrom themixedstrategy.

The large LP computationstypically take lessthana day
(usingCPLEX with the barrier method), anduseup to two
Gigabytes of RAM. Larger problemswill exceedavailable
memory, which is common for large LP systems. Certain
LP techniquessuchasconstraintgenerationcouldpotentially
extendthe range of solvableinstancesconsiderably, but this
would probably only allow the useof oneor two additional
bucketsperplayer.

5 Experiments

5.1 Testingagainstcomputer players

A seriesof matchesbetweencomputer programswas con-
ducted, with theresultsshown in Table1. Win ratesaremea-
suredin smallbetsperhand(sb/h).Eachmatchwasrunfor at
least20,000 games(andover 100,000 gamesin somecases).
The varianceper game depends greatlyon the stylesof the
two players involved,but is typically +/- 6 sb. Thestandard
deviation for eachmatchoutcome is not shown, but is nor-
mally lessthan+/- 0.03sb/h.

The“bot players” were:
PsOpti2, composed of a hand-crafted 3-round pre�op

model, providingconditional probability distributionsto each
of seven3-roundpost�op models(Figure 2). All modelsin
this prototypeusedsix bucketsperplayerperround.

PsOpti1, composedof four 3-round post�op models un-
der the naive uniform distribution assumption, with 7 buck-
etsperplayerperround. Selby's optimalsolutionfor pre�op
Hold'emis usedto play thepre�op ([Selby, 1999]).

PsOpti0, composedof a single 3-round post�op model,
wrongly assuminguniformdistributionsandaninitial potsize
of two bets,with seven bucketsper playerper round. This
program usedan always-callpolicy for the pre�op betting
round.

Poki, theUniversity of Albertapoker program. This older
versionof Poki wasnot designedto play the2-player game,
andcanbedefeatedrathereasily, but is a usefulbenchmark.

Anti-Poki, a rule-basedprogramdesignedto beatPoki by
exploiting its weaknessesandvulnerabilitiesin the 2-player
game. Any speci�c counter-strategy canbe even morevul-
nerable to adaptiveplayers.

Aadapti, a relatively simple adaptive player, capableof
slowly learningandexploiting persistentpatterns in play.

AlwaysCall, a very weakbenchmarkstrategy.
AlwaysRaise, a very weakbenchmarkstrategy.
It is importantto understandthata game-theoreticoptimal

playeris, in principle, not designedto win. Its purposeis to
not lose. An implicit assumption is that theopponentis also
playing optimally, andnothingcanbe gainedby observing
theopponentfor patterns or weaknesses.

In a simple game like RoShamBo(alsoknown asRock-
Paper-Scissors),playing theoptimal strategy ensuresabreak-
even result, regardlessof what the opponent does,and is
therefore insuf�cient to defeatweakopponents,or to win a
tournament([Billings, 2000]). Poker is more complex, and
in theory an optimal player can win, but only if the oppo-
nentmakesdominatederrors. Any time a player makesany
choicethat is part of a randomizedmixed strategy of some
game-theoreticoptimalpolicy, thatdecisionis notdominated.
In otherwords,it is possibleto play in a highly sub-optimal
manner, but still breakeven againstan optimal player, be-
causethosechoicesarenotstrictly dominated.

Sincethepseudo-optimalstrategiesdonoopponentmodel-
ing, thereis noguaranteethatthey will beespeciallyeffective
againstverybadorhighly predictableplayers.They mustrely
only on thesefundamentalstrategic errors,andthemargin of
victory mightberelatively modestasa result.



No. Program 1 2 3 4 5 6 7 8
1 PsOpti1 X +0.090 +0.091 +0.251 +0.156 +0.047 +0.546 +0.635
2 PsOpti2 -0.090 X +0.069 +0.118 +0.054 +0.045 +0.505 +0.319
3 PsOpti0 -0.091 -0.069 X +0.163 +0.135 +0.001 +0.418 +0.118
4 Aadapti -0.251 -0.118 -0.163 X +0.178 +0.550 +0.905 +2.615
5 Anti-Poki -0.156 -0.054 -0.135 -0.178 X +0.385 +0.143 +0.541
6 Poki -0.047 -0.045 -0.001 -0.550 -0.385 X +0.537 +2.285
7 AlwaysCall -0.546 -0.505 -0.418 -0.905 -0.143 -0.537 X =0.000
8 AlwaysRaise -0.635 -0.319 -0.118 -2.615 -0.541 -2.285 =0.000 X

Table1: Computervscomputer matches (sb/h).

Thecritical questionis whethersucherrorsarecommon in
practice. Thereis no de�niti ve answerto this questionyet,
but preliminary evidencesuggeststhat dominatederrors oc-
cur often enough to gain a measurable EV advantageover
weaker players,but maynot bevery common in theplay of
verygoodplayers.

The �rst testsof theviability of pseudo-optimalsolutions
were done with PsOpti0 playing post�op Hold'em, where
both players agreeto simply call in the pre�op (thereby
matching theexactpre-conditionsfor thepost�op solution).
In thosepreliminary tests,a poker master(the �rst author)
playedmorethan2000 hands, andwasunable to defeat the
pseudo-optimal strategy. In contrast,Poki hadbeenbeaten
consistentlyat a rate of over 0.8 sb/h (which is more than
wouldbelostby simply folding every hand).

Usingthesameno-betpre�op policy, PsOpti0wasableto
defeatPoki ata rateof +0.144 sb/h(comparedto +0.001sb/h
for thefull game includingpre�op), anddefeatedAadapti at
+0.410 sb/h(comparedto +0.163sb/hfor thefull game).

All of the pseudo-optimal playersplay substantiallybet-
ter than any previously existing computer programs. Even
PsOpti0, which is not designed to play the full game,earns
enough from the post�op betting rounds to offset the EV
lossesfrom the pre�op round (where it never raisesgood
hands,nor folds badones).

It is suspicious thatPsOpti1outperformedPsOpti2, which
in principle shouldbe a betterapproximation. Subsequent
analysisof theplay of PsOpti2revealedsomeprogramming
errors,andalsosuggestedthatthebucketassignments for the
pre�op modelwere�a wed. This mayhave resultedin anin-
accuratepseudo-optimal pre�op strategy, andconsequentim-
balancesin theprior distributions usedasinput for thepost-
�op models. We expect that this will be recti�ed in future
versions,andthatthePsOpti2designwill surpassPsOpti1in
performance.

5.2 Testingagainsthuman players
While theseresultsareencouraging, noneof thenon-pseudo-
optimal computer opponentsare better than intermediate
strengthat2-playerTexasHold'em.Therefore,matcheswere
conductedagainst humanopponents.

More than100participants volunteeredto playagainstthe
pseudo-optimal players on ourpublic webapplet(www.cs.
ualberta. ca/˜games/ poker/ ), including many expe-
riencedplayers, a few masters,andoneworld-classplayer.
The programsprovided somefun opposition, andendedup
with a winning record overall. The results are summa-

Player Hands Posn1 Posn2 sb/h
Master-1 early 1147 -0.324 +0.360 +0.017
Master-1 late 2880 -0.054 +0.396 +0.170

Experienced-1 803 +0.175 +0.002 +0.088
Experienced-2 1001 -0.166 -0.168 -0.167
Experienced-3 1378 +0.119 -0.016 +0.052
Experienced-4 1086 +0.042 -0.039 +0.002
Intermediate-1 2448 +0.031 +0.203 +0.117

Novice-1 1277 -0.159 -0.154 -0.156
All Opponents 15125 -0.015

Table2: HumanvsPsOpti2matches.

Player Hands Posn1 Posn2 sb/h
thecount 7030 -0.006 +0.103 +0.048
Master-1 2872 +0.141 +0.314 +0.228
Master-2 569 -0.007 +0.035 +0.014
Master-3 425 +0.047 +0.373 +0.209

Experienced-1 4078 -0.058 +0.164 +0.053
Experienced-2 511 +0.152 +0.369 +0.260
Experienced-3 2303 -0.252 +0.128 -0.062
Experienced-5 610 -0.250 -0.229 -0.239
Intermediate-1 16288 -0.145 +0.048 -0.049
Intermediate-2 478 -0.182 +0.402 +0.110

Novice-1 5045 -0.222 -0.010 -0.116
Novice-2 485 -0.255 -0.139 -0.197
Novice-3 1017 -0.369 -0.051 -0.210
Novice-4 583 -0.053 -0.384 -0.219
Novice-5 425 -0.571 -0.296 -0.433

All Opponents 46479 -0.057

Table3: HumanvsPsOpti1matches.

rized in Table 2 andTable3. (Master-1 is the �rst author,
Experienced-1is thethird author).

In most cases,the relatively short length of the match
leaves a high degree of uncertainty in the outcome, limit-
ing how muchcanbesafelyconcluded. Nevertheless,some
players did appearto have a de�nite edge,while otherswere
clearlylosing.

A number of interestingobservationsweremadeover the
courseof thesegames.It wasobviousthatmostpeople hada
lot of dif�culty learningandadjustingto thecomputer'sstyle
of play. In poker, knowing the basicapproachof the oppo-
nentis essential,sinceit will dictatehow to properly handle
many situationsthat arise. Someplayers wrongly attributed
intelligencewherenone was present. After losing a 1000-
gamematch,oneexperiencedplayercommented“the bothas
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Figure4: Progressof the“thecount” vsPsOpti1

me�gured out now”, indicatingthat its opponentmodel was
accurate,whenin factthepseudo-optimalplayeris oblivious
anddoesnomodeling atall.

It was also evident that theseprogramsdo considerably
better in practice than might be expected, due to the emo-
tional frailty of their humanopponents.Many players com-
mentedthatplayingagainstthepseudo-optimal opponentwas
anexasperatingexperience.Thebot routinely makesuncon-
ventional playsthat confuseandconfoundhumans. Invari-
ably, someof these“bizarre” playshappento coincidewith a
lucky escape,andseveralof thesebadbeatsin quicksucces-
sionwill oftencausestrongemotional reactions (sometimes
referred to as “going on tilt”). The level of play generally
goesdown sharplyin thesecircumstances.

This suggeststhata perfectgame-theoretic optimalpoker
playercould perhaps beateven the besthumans in the long
run, becauseany EV lost in moments of weaknesswould
never beregained. However, thewin ratefor sucha program
could still be quite small, giving it only a slight advantage.
Thusit would beunable to exert its superiority convincingly
over the short term, suchas the few hundred hands of one
session,or over thecourseof a world championshiptourna-
ment. Sinceeventhebesthumanplayersareknown to have
biasesandweaknesses,opponentmodeling will almostcer-
tainly be necessaryto producea programthat surpassesall
human players.

5.3 Testingagainsta world-class player
The elite poker expert wasGautam Rao, who is known as
“thecount” or “CountDracula”in theworld of popularonline
poker rooms.Mr. Raois the#1all-timewinnerin thehistory
of the oldestonline game, by an enormousmargin over all
otherplayers,both in total earnings and in dollar-per-hand
rate. His particularspecialtyis in short-handedgameswith
� ve or fewer players. He is recognized as one of the best
players in the world in thesegames,andis alsoexceptional
at 2-player Hold'em. Like many top-�ight players, hehasa
dynamic ultra-aggressivestyle.

Mr. Rao agreed to play an exhibition match against

PsOpti1, playing more than7000hands over the course of
severaldays.Thegraphin Figure4 shows theprogressionof
thematch.

Thepseudo-optimal playerstartedwith somegood fortune,
but lost at a rateof about-0.2sb/hover thenext 2000hands.
Thentherewasa sudden reversal, following a seriesof for-
tuitous outcomes for the program. Although “thecount” is
renown for his mentaltoughness,an uncommonrun of bad
luck can be very frustrating even for the most experienced
players. Mr. Raobelievesheplayedbelow his bestlevel dur-
ing thatstage,whichcontributedto adramaticdropwherehe
lost 300sbin lessthan400hands.Mr. Raoresumedplay the
following day, but wasunable to recover thelosses,slipping
further to -200sbafter3700 hands. At this point hestopped
playanddid a careful reassessment.

It wasclearthat his normal style for maximizing income
against typicalhumanopponentswasnoteffectiveagainstthe
pseudo-optimal player. Whereashuman playerswould nor-
mally succumbto a lot of pressure from aggressive betting,
thebot waswilling to call all theway to theshowdown with
aslittle asaJackor Queenhighcard.Thatkindof playwould
befolly againstmostopponents,but is appropriateagainst an
extremely aggressive opponent. Most human players fail to
make the necessaryadjustment under theseatypical condi-
tions,but theprogramhasnosenseof fear.

Mr. Raochangedhis approachto be lessaggressive, with
immediaterewards, asshown by the +600sb increaseover
thenext 1100hands(someof whichhecreditedto agood run
of cards).Mr. Raowasableto utilize his knowledgethat the
computerplayerdidnotdoany opponentmodeling. Knowing
this allows a humanplayerto systematicallyprobefor weak-
nesses,without any fear of beingpunishedfor playing in a
methodical andhighly predictablemanner, sinceanoblivious
opponentdoesnotexploit thosepatterns andbiases.

Although heenjoyedmuchmoresuccessin thematchfrom
thatpoint forward, therewerestill some“adventures”,suchas
thesharpdeclineat5400 hands. Poker is agameof veryhigh
variance,especiallybetweentwoopponentswith sharpstyles,
ascanbeseenby thedramaticswingsover thecourseof this
match.Although7000gamesmayseemlike a lot, Mr. Rao's
victory in this matchwasstill notstatisticallyconclusive.

We now believe that a humanpoker mastercan eventu-
ally gaina sizableadvantageover thesepseudo-optimal pro-
totypes(perhaps+0.20sb/hormoreis sustainable).However,
it requiresagoodunderstandingof thedesignof theprogram
andits resultingweaknesses.That knowledgeis dif�cu lt to
learnduringnormalplay, dueto thegoodinformationhiding
providedby anappropriatemixture of plansandtactics.This
“cloudof confusion” is anatural barrierto opponentlearning.
It would be even moredif�cult to learnagainstan adaptive
programwith goodopponentmodeling,sinceany methodical
testingby the human would be easilyexploited. This is in
starkcontrastto typical human opponents,who canoftenbe
accuratelymodeled afteronly asmallnumberof hands.

6 Conclusionsand Futur e Work
The pseudo-optimal playerspresentedin this paperare the
�rst completeapproximations of a game-theoretic optimal
strategy for a full-scalevariationof realpoker.



Severalabstraction techniqueswereexplored,resultingin
the reasonably accuraterepresentationof a large imperfect
information game tree having ��������	���
 nodeswith a small
collectionof modelsof size ������� ��
 . Despitethesemassive
reductions and simpli�cations, the resultingprogramsplay
respectably. For the �rst time ever, computer programsare
notcompletelyoutclassedby stronghumanoppositionin the
gameof 2-playerTexasHold'em.

Usefulabstractions includedbettingtreereductions, trun-
cationof bettingrounds combined with EV leaf nodes,and
bypassing betting rounds. A 3-round model anchored at
the root provided a pseudo-optimal strategy for the pre�op
round, which in turnprovidedthepropercontextual informa-
tion needed to determine conditional probabilities for post-
�op models.Themostpowerful abstractionsfor reducingthe
problem size werebasedon bucketing, a methodfor parti-
tioningall possibleholdingsaccording to strategic similarity.
Although thesemethodsexploit theparticular structureof the
TexasHold'em game tree,theprinciplesaregeneral enough
to beappliedto a wide varietyof imperfect informationdo-
mains.

Many re�nementsandimprovements will be madeto the
basictechniquesin the coming months. Furthertestingwill
alsocontinue, sinceaccurateassessmentin a high variance
domain is alwaysdif�cu lt.

Thenext stageof theresearchwill beto applythesetech-
niques to obtain approximations of Nashequilibria for � -
playerTexasHold'em. Thispromisesto beachallenging ex-
tension,sincemulti-playergameshave many propertiesthat
donotexist in the2-playergame.

Finally, having reasonable approximations of optimal
strategies does not lessenthe importance of good oppo-
nentmodeling. Learning against an adaptive adversaryin a
stochasticgame is a challenging problem, andtherewill be
many ideasto explore in combining the two different forms
of information.Thatwill likely bethekey differencebetween
aprogramthatcancompetewith thebest,andaprogramthat
surpassesall humanplayers.

Quoting“thecount”:
“You havea very strong program. Onceyou add
opponentmodeling to it, it will kill everyone.”
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